9.如圖,在等邊△ABC中,AB=6,AD⊥BC于點(diǎn)D.點(diǎn)P在邊AB上運(yùn)動(dòng),過點(diǎn)P作PE∥BC,與邊AC交于點(diǎn)E,連接ED,以PE、ED為鄰邊作平行四邊形PEDF.設(shè)線段AP的長(zhǎng)為x(0<x<6).
(1)求線段PE的長(zhǎng).(用含x的代數(shù)式表示)
(2)當(dāng)四邊形PEDF為菱形時(shí),求x的值.

分析 (1)由PE與BC平行,得到三角形APE與三角形ABC相似,根據(jù)三角形ABC為等邊三角形,得到三角形APE為等邊三角形,可得出PE=AP=x;
(2)若四邊形PEDF為菱形,得到PE=DE=x,由三角形APE為等邊三角形得到AE=PE,可得出AE=DE,利用等邊對(duì)等角得到∠DAC=∠ADE,利用等式的性質(zhì)得到∠EDC=∠C,利用等角對(duì)等邊得到DE=EC,即可求出x的值;

解答 解:(1)∵PE∥BC,
∴△APE∽△ABC,
又∵△ABC是等邊三角形,
∴△APE是等邊三角形,
∴PE=AP=x(0<x<6);
(2)∵四邊形PEDF為菱形,
∴PE=DE=x,
又∵△APE是等邊三角形,則AE=PE,
∴AE=DE,
∴∠DAC=∠ADE,
又∵∠ADE+∠EDC=∠DAC+∠C=90°,
∴∠EDC=∠C,
∴DE=EC,
∴DE=EC=AE=$\frac{1}{2}$AC=$\frac{1}{2}$AB=3,
即x=3.

點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),菱形的性質(zhì),平行的性質(zhì),以及平行四邊形的面積,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在?ABCD中,E為AD中點(diǎn),CE交BA延長(zhǎng)線于F,
求證:CD=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.因式分解
(1)4a(x-3)+2b(3-x)     
(2)x4-18x2+81
(3)4b(1-b)3+2(b-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,直線OA:y=$\frac{1}{3}$x與直線AB:y=kx+b相交于點(diǎn)A(9,3),點(diǎn)B坐標(biāo)為(0,12).
(1)求直線AB的表達(dá)式;
(2)點(diǎn)P是線段OA上任意一點(diǎn)(不與點(diǎn)O,A重合),過點(diǎn)P作PQ∥y軸,交線段AB于點(diǎn)Q,分別過P,Q作y軸的直線,垂足分別為M,H,得矩形PQHM.如果矩形PQHM的周長(zhǎng)為20,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng) m=-$\frac{1}{4}$時(shí),方程 x+2y=2,mx-y=0,2x+y=7有公共解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.分解因式:16x2-(x2+4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,AC=BC,∠C=90°,D是AB的中點(diǎn),DE⊥DF,點(diǎn)E,F(xiàn)分別在AC,BC上,求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在△ABC中,AB=BC,∠ABC=90°,E是AB上一點(diǎn),BE=2,AE=3BE,P是AC上一動(dòng)點(diǎn),則PB+PE的最小值是10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知y與x滿足關(guān)系式y(tǒng)=ax2+bx+1,當(dāng)x=2時(shí),y=1,當(dāng)x=-1時(shí),y=7,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案