如圖,⊙M過坐標原點O,分別交兩坐標軸于A(1,O),B(0,2)兩點,直線CD交x軸于點C(6,0),交y軸于點D(0,3),過點O作直線OF,分別交⊙M于點E,交直線CD于點F.
(1)∠CDO=∠BAO;
(2)求證:OE•OF=OA•OC;
(3)若OE=,試求點F的坐標.
證明:(1)如圖:
∵C(6,0),D(0,3),
∴tan∠CDO===2,
∵A(1,O),B(0,2),
cot∠BAO==2,
∴∠CDO=∠BAO,
(2)如圖,連接AE,
由(1)知∠CDO=∠BAO,
∴∠OCD=∠OBA,
∵∠OBA=∠OEA,
∴∠OCD=∠OEA,
∴△OCF∽△OEA,
∴=
∴OE•OF=OA•OC;
(3)由(2)得OE•OF=OA•OC,
∵OA=1,0C=6,OE=,
∴OF═==2
設F(x,y)
∴x2+y2=8,
∵直線CD的函數(shù)式為:y=﹣x+3
∴組成的方程組為,
解得或
∴F的坐標為:(2,2)或(,).
科目:初中數(shù)學 來源: 題型:
如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點A(2,1),與x軸交于點B.
(1)求k和b的值;
(2)連接OA,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一段拋物線y=﹣x(x﹣1)(0≤x≤1)記為m1,它與x軸交點為O、A1,頂點為P1;將m1繞點A1旋轉(zhuǎn)180°得m2,交x軸于點A2,頂點為P2;將m2繞點A2旋轉(zhuǎn)180°得m3,交x軸于點A3,頂點為P3,…,如此進行下去,直至得m10,頂點為P10,則P10的坐標為( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,CA=CB,AB=2,過點C作CD⊥AB,垂足為D,則CD的長為( )
| A. |
| B. |
| C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( )
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com