將如圖(1)所示的三角形紙片沿粗虛線折疊成如圖(2)所示的圖形.已知圖(1)三角形的面積是圖(2)圖形面表的1.5倍,圖(2)中陰影部分的面積之和為1平方厘米.求重疊部分的面積.
分析:已知圖(1)三角形的面積是圖(2)圖形面表的1.5倍,又由圖(2)可知,重疊部分面積加陰影部分等于圖(1)的面積,因此,重疊部分是圖(1)的0.5倍,則陰影部分面積也是圖形(1)的0.5倍,又知中陰影部分的面積之和為1平方厘米,因此,圖(1)的面積是2平方厘米,重疊部分面積是2平方厘米-1平方厘米=1平方厘米.
解答:解:重疊部分面積是圖(1)面積的:1.5-1=0.5倍,
因此,陰影部分面也是圖(1)面積的0.5倍,
又知影部分的面積之和為1平方厘米,
所以圖(1)面積的1÷0.5=2(平方厘米),
所以重疊部分的面積是2平方厘米-1平方厘米=1平方厘米.
答:重疊部分的面積是1平方厘米.
點(diǎn)評(píng):本題是考查簡(jiǎn)單圖形的折疊問(wèn)題,關(guān)鍵是明白重疊部分面積加陰影部分等于圖(1)的面積,重疊部分是圖(1)的0.5倍,陰影部分面積也是圖形(1)的0.5倍,從而求得陰影部分面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料,并解決后面的問(wèn)題.
★閱讀材料:
我國(guó)是歷史上較早發(fā)現(xiàn)并運(yùn)用“勾股定理”的國(guó)家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長(zhǎng)的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請(qǐng)運(yùn)用“勾股定理”解決以下問(wèn)題:

(1)如圖一,分別以直角三角形的邊為邊長(zhǎng)作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個(gè)園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個(gè)小園孔,則一條直達(dá)底部的直吸管的最大長(zhǎng)度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計(jì).
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點(diǎn)有一只螞蟻,它想吃到與A點(diǎn)相對(duì)的B點(diǎn)處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個(gè)長(zhǎng)方形,如圖五所示(A點(diǎn)的位置已經(jīng)給出),請(qǐng)?jiān)趫D中中標(biāo)出B點(diǎn)的位置并連接AB.
②小聰認(rèn)為線段AB的長(zhǎng)度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長(zhǎng)方形的底面A點(diǎn)有一只螞蟻,想吃到上底面與A點(diǎn)相對(duì)的B點(diǎn)處的食物,它沿長(zhǎng)方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

有一塊7×7個(gè)方格的正方形方格板,每個(gè)方格都涂有黑白兩種顏色之一.我們把如圖1所示的4種三聯(lián)格稱為“角形”.規(guī)定每次操作可將一個(gè)角形中的3個(gè)方格同時(shí)改變顏色,即黑格改涂成白色,白格改涂成黑色.假設(shè)最開始如圖2有25個(gè)黑格,24個(gè)白格.經(jīng)過(guò)若干次操作后,方格板上的黑格可能會(huì)增多,黑格最多會(huì)變?yōu)?!--BA-->
48
48
個(gè).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

有三個(gè)圓心相同的半圓,它們的直徑分別為1、3、5,用線段將其分割成9塊,如圖所示,如果每塊中的字母代表著這一塊面積,并且相同字母表示相同的面積,那么A:B=
5:6
5:6

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀下列材料,并解決后面的問(wèn)題.
★閱讀材料:
我國(guó)是歷史上較早發(fā)現(xiàn)并運(yùn)用“勾股定理”的國(guó)家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長(zhǎng)的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請(qǐng)運(yùn)用“勾股定理”解決以下問(wèn)題:

(1)如圖一,分別以直角三角形的邊為邊長(zhǎng)作正方形,其中s1=400,s2=225,則s3=________.
(2)如圖二,是一個(gè)園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個(gè)小園孔,則一條直達(dá)底部的直吸管的最大長(zhǎng)度是________.注:罐壁厚度和頂部園孔直徑忽略不計(jì).
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=________. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點(diǎn)有一只螞蟻,它想吃到與A點(diǎn)相對(duì)的B點(diǎn)處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個(gè)長(zhǎng)方形,如圖五所示(A點(diǎn)的位置已經(jīng)給出),請(qǐng)?jiān)趫D中中標(biāo)出B點(diǎn)的位置并連接AB.
②小聰認(rèn)為線段AB的長(zhǎng)度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是________厘米.注:π值取3.
(5)如圖六,在長(zhǎng)方形的底面A點(diǎn)有一只螞蟻,想吃到上底面與A點(diǎn)相對(duì)的B點(diǎn)處的食物,它沿長(zhǎng)方形表面爬行的最短路程是________厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源:模擬題 題型:填空題

將正整數(shù)按如圖所示的規(guī)律排列下去,若數(shù)對(duì)(n,m)表示第n排,從左到右第m個(gè)數(shù),如(4,2)表示的數(shù)是9,則表示數(shù)16的數(shù)對(duì)是(  )。
               1    ……第一排    
           3  2    ……第二排    
         4  5  6  ……第三排    
     10  9  8  7……第四排

查看答案和解析>>

同步練習(xí)冊(cè)答案