如圖:長方形ABCD的面積是180平方分米,三角形DOE的面積是22.5平方分米,DO=7.5分米.求:①CE的長度;
②三角形AOD的面積.

解:長方形ABCD面積一半=180÷2=90平方分米,三角形ADO+三角形DOE=三角形ADE,三角形ADE面積=底×高,
因為底是長方形的長,高是長方形的寬,所以三角形ADE面積=長方形ABCD面積的一半,
三角形ADO+三角形DOE的面積=長方形ABCD面積的一半=90平方分米,
因為三角形ADO的面積=90-22.5=67.5(平方分米),
所以AD=67.5×2÷7.5=18(分米),BC=AD=18分米
CD=180÷18=10(分米),
CO=10-7.5=2.5(分米),
因為三角形ADO和三角形ECO三個內角相等,
所以三角形ADO相似于三角形ECO,
所以CE:AD=CO:DO
CE=18×2.5÷7.5=6(分米),
答:CE的長度是6分米,三角形AOD的面積是67.5平方分米.
分析:長方形ABCD面積一半=180÷2=90平方分米,三角形ADO+三角形DOE=三角形ADE,三角形ADE面積=底×高,
因為底是長方形的長,高是長方形的寬,所以三角形ADE面積=長方形ABCD面積的一半,
三角形ADO+三角形DOE的面積=長方形ABCD面積的一半=90平方分米,再根據(jù)三角形的面積公式解答.
點評:此題解答關鍵是通過轉化求出長方形的長和寬,進而根據(jù)三角形的面積公式、以及三角形的相似性進行解答.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

如圖,長方形ABCD的面積為60平方厘米,E、F、G分別是AB,BC,CD的中點,H為AD上任意一點,求陰影部分的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,長方形ABCD中,EF∥AD,GH∥AB,EF和GH相較于點O,長方形OFCH的面積比長方形AEOG的面積大6平方厘米,求三角形OBD的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,長方形ABCD,ABEF,AGHF的長與寬的比相同,且
ABCD面積
SAGHF面積
=
81
16
,長方形BEHG的周長是22,求長方形ECDF的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

(2012?四川)如圖,長方形ABCD的面積是24平方分米,且被分成兩個長方形,如果AB:AE=4:1,那么圖中陰影部分三角形的面積是多少?

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,長方形ABCD把這個長方形繞頂點A向右旋轉90°,求CD邊掃過的陰影部分面積.(單位:厘米)

查看答案和解析>>

同步練習冊答案