分析 圖中的等腰直角三角形的底邊是圓的直徑,根據(jù)等腰三角形的底邊上的高同時是底邊上的中線和頂角的角平分線,所以這個三角形的高是圓的半徑r,根據(jù)三角形的面積公式得$\frac{1}{2}$×2r×r=10平方厘米,得r2=10,然后帶入圓的面積公式S=πr2,即可得解.
解答 解:假設圓的半徑是r,根據(jù)三角形的面積公式得:
$\frac{1}{2}$×2r×r=10(平方厘米)
則r2=10
圓的面積:πr2=10π(平方厘米);
答:圓的面積是10π平方厘米.
點評 找到等腰直角三角形和圓之間的數(shù)量關(guān)系是解決此題的關(guān)鍵.
科目:小學數(shù)學 來源: 題型:選擇題
A. | 10% | B. | $\frac{1}{11}$ | C. | 90% |
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com