葉序現(xiàn)象與斐波那契數(shù)列
你吃過(guò)菠蘿么
?仔細(xì)觀察菠蘿果實(shí)的排列狀況,就會(huì)發(fā)現(xiàn)它們形成一種螺旋結(jié)構(gòu)。使人驚異的是,這種排列的現(xiàn)象在植物的葉、鱗片、花等部分,幾乎到處可見(jiàn)。再進(jìn)一步研究一下這些排列的狀況,它們通常是以順時(shí)針?lè)较蚧蚰鏁r(shí)針?lè)较蚵菪螌訉优帕械摹H绻麛?shù)一下其中順時(shí)針和逆時(shí)針排列的層數(shù),就可發(fā)現(xiàn)這兩個(gè)數(shù)是位于斐波那契數(shù)列中相鄰的兩個(gè)數(shù)。
什么是斐波那契數(shù)列
?斐波那契(1170-1240)是一位意大利的數(shù)學(xué)家。他在所寫(xiě)的《算盤(pán)書(shū)》一書(shū)中,提出了下面的問(wèn)題。“有小兔子一對(duì),如果它們第二個(gè)月成年,第三個(gè)月生下一對(duì)小兔,以后,每月生產(chǎn)小兔一對(duì),而所生的小兔亦在第二個(gè)月成年,第三個(gè)月生產(chǎn)另一對(duì)小兔,此后也每個(gè)月生一對(duì)小兔。則一年后共有多少對(duì)兔子
?”(假設(shè)每產(chǎn)一對(duì)兔子必為一雌一雄,而所有兔子都可以相互交配,并且沒(méi)有死亡。)分析:
這樣推算下去,每個(gè)月所生的兔子數(shù)可以排成下面的數(shù)列:
1,1,2,3,5,8,13,21,34,55,89,144……
我們把這一列數(shù)稱為斐波那契數(shù)列。研究一下這一列數(shù)的規(guī)律,從第三項(xiàng)起每一個(gè)數(shù)都是排在它前面兩個(gè)數(shù)的和。如
2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,21=8+13,…
斐波那契數(shù)列可以無(wú)限地寫(xiě)下去。設(shè)
表示其中的第n項(xiàng),那么。
比如,我們上面排出的第
11項(xiàng)是89,第12項(xiàng)是144,那么第13項(xiàng)應(yīng)該是
以下各項(xiàng)依序是
… … …
生物學(xué)家研究了花序中小花排列的螺旋數(shù),一般順時(shí)針?lè)较驗(yàn)?/FONT>21,逆時(shí)針?lè)较驗(yàn)?/FONT>34,恰恰是斐波那契數(shù)列中的及。又如向日葵花序中小花或籽粒的排列,順時(shí)針螺旋數(shù)與逆時(shí)針螺旋數(shù)之比一般是12∶21(),34∶55(),89∶144(),在一些大型樣本中,這個(gè)比值甚至為144∶233()。同樣,生物學(xué)家研究了各種菠蘿球形花的鱗片順、逆時(shí)針的螺旋數(shù),一般總是落在斐波那契數(shù)列3,5,8和13相鄰的兩數(shù)中。
為什么不同的植物都具有類似的螺旋
?為什么這些螺旋圈數(shù)總是相鄰的斐波那契數(shù)?兔子的繁衍與植物的花序之間為什么會(huì)有這樣的聯(lián)系,這些問(wèn)題至今尚未得到令人滿意的解答。目前,科學(xué)家們一般認(rèn)為,對(duì)植物來(lái)說(shuō),斐波那契葉序是最節(jié)約能量的。年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:小學(xué)數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:072
葉序現(xiàn)象與斐波那契數(shù)列
你吃過(guò)菠蘿么
?仔細(xì)觀察菠蘿果實(shí)的排列狀況,就會(huì)發(fā)現(xiàn)它們形成一種螺旋結(jié)構(gòu)。使人驚異的是,這種排列的現(xiàn)象在植物的葉、鱗片、花等部分,幾乎到處可見(jiàn)。再進(jìn)一步研究一下這些排列的狀況,它們通常是以順時(shí)針?lè)较蚧蚰鏁r(shí)針?lè)较蚵菪螌訉优帕械。如果?shù)一下其中順時(shí)針和逆時(shí)針排列的層數(shù),就可發(fā)現(xiàn)這兩個(gè)數(shù)是位于斐波那契數(shù)列中相鄰的兩個(gè)數(shù)。
什么是斐波那契數(shù)列
?斐波那契(1170-1240)是一位意大利的數(shù)學(xué)家。他在所寫(xiě)的《算盤(pán)書(shū)》一書(shū)中,提出了下面的問(wèn)題。“有小兔子一對(duì),如果它們第二個(gè)月成年,第三個(gè)月生下一對(duì)小兔,以后,每月生產(chǎn)小兔一對(duì),而所生的小兔亦在第二個(gè)月成年,第三個(gè)月生產(chǎn)另一對(duì)小兔,此后也每個(gè)月生一對(duì)小兔。則一年后共有多少對(duì)兔子
?”(假設(shè)每產(chǎn)一對(duì)兔子必為一雌一雄,而所有兔子都可以相互交配,并且沒(méi)有死亡。)分析:
這樣推算下去,每個(gè)月所生的兔子數(shù)可以排成下面的數(shù)列:
1,1,2,3,5,8,13,21,34,55,89,144……
我們把這一列數(shù)稱為斐波那契數(shù)列。研究一下這一列數(shù)的規(guī)律,從第三項(xiàng)起每一個(gè)數(shù)都是排在它前面兩個(gè)數(shù)的和。如
2=1+1,3=1+2,5=2+3,8=3+5,13=5+8,21=8+13,…
斐波那契數(shù)列可以無(wú)限地寫(xiě)下去。設(shè)
表示其中的第n項(xiàng),那么。
比如,我們上面排出的第
11項(xiàng)是89,第12項(xiàng)是144,那么第13項(xiàng)應(yīng)該是
以下各項(xiàng)依序是
… … …
生物學(xué)家研究了花序中小花排列的螺旋數(shù),一般順時(shí)針?lè)较驗(yàn)?/FONT>21,逆時(shí)針?lè)较驗(yàn)?/FONT>34,恰恰是斐波那契數(shù)列中的及。又如向日葵花序中小花或籽粒的排列,順時(shí)針螺旋數(shù)與逆時(shí)針螺旋數(shù)之比一般是12∶21(),34∶55(),89∶144(),在一些大型樣本中,這個(gè)比值甚至為144∶233()。同樣,生物學(xué)家研究了各種菠蘿球形花的鱗片順、逆時(shí)針的螺旋數(shù),一般總是落在斐波那契數(shù)列3,5,8和13相鄰的兩數(shù)中。
為什么不同的植物都具有類似的螺旋
?為什么這些螺旋圈數(shù)總是相鄰的斐波那契數(shù)?兔子的繁衍與植物的花序之間為什么會(huì)有這樣的聯(lián)系,這些問(wèn)題至今尚未得到令人滿意的解答。目前,科學(xué)家們一般認(rèn)為,對(duì)植物來(lái)說(shuō),斐波那契葉序是最節(jié)約能量的。查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com