考點(diǎn):分?jǐn)?shù)的巧算
專題:計(jì)算問(wèn)題(巧算速算)
分析:先把原式化為=(1×2+2×3+3×4+…+27×28+28×29)×
,括號(hào)內(nèi)的運(yùn)算如下:
1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28),然后運(yùn)用乘法分配律計(jì)算,變?yōu)椋海?+2+3+…28)+(1×1+2×2+3×3+…28×28),再運(yùn)用以下公式計(jì)算即可:1+2+3+…+n=(1+n)×n÷2,1×1+2×2+3×3+4×4+…+n×n=n(n+1)(2n+1)÷6.
解答:
解:1×
+2×
+3×
+…27×
+28×
=(1×2×
)+(2×3×
+3×4×
)+…+(27×28×
+28×29×
)
=(1×2+2×3+3×4+…+27×28+28×29)×
=[1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28)]×
=[1+1×1+2+2×2+3+3×3+…28+28×28]×
=[(1+2+3+…28)+(1×1+2×2+3×3+…28×28)]×
=[(1+28)×28÷2+28×(28+1)×(2×28+1)÷6]×
=[406+7714]×
=8120×
=280
故答案為:280.
點(diǎn)評(píng):完成此題,關(guān)鍵運(yùn)用了一下兩個(gè)公式:1+2+3+…+n=(1+n)×n÷2,1×1+2×2+3×3+4×4+…+n×n=n(n+1)(2n+1)÷6,