(2013•燕山區(qū)一模)△ABC中,AC=BC.以BC為直徑作⊙O交AB于點D,交AC于點G.直線DF⊥AC,垂足為F,交CB的延長線于點E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)如果BC=10,AB=12,求CG的長.
分析:根據(jù)題意做出輔助線連接OD,CD,BG,(1)由圓周角定理和垂直的性質(zhì)推出∠BDC=∠AFD=90°,再由等腰三角形的性質(zhì)推出∠A=∠ABC,根據(jù)余角的性質(zhì)即可推出∠BCD=∠ADF,由∠ADF=∠EDB,OC=OD,推出∠BCD=∠ODC,通過等量代換即可推出∠EDB+∠BDO=90°,即OD⊥EF,從而推出EF與⊙O相切,(2)由BG⊥AC,∠A=∠ABC,推出△ABG∽△BCD,求得比例式
AB
BC
=
AG
BD
,根據(jù)OD⊥EF,AC⊥EF,推出OD∥AC,根據(jù)平行線等分線段定理推出BD=AD后,結(jié)合已知即可求出BD=AD=6,由AC=BC=10,即可求出AG=7.2,結(jié)合圖形即可推出CG=AC-AG=10-7.2=2.8.
解答:解:如圖,連接OD,CD,BG,
(1)∵BC為⊙O的直徑,
∴∠BDC=90°,
∵DF⊥AC,
∴∠AFD=90°,
∵AC=BC,
∴∠A=∠ABC,
∴∠BCD=∠ADF,
∵∠ADF=∠EDB,
∵OC=OD,
∴∠BCD=∠ODC,
∴∠ODC=∠EDB,
∴∠ODC+∠BDO=90°,
∴∠EDB+∠BDO=90°,
即∠EDO=90°,
∴OD⊥EF,
∴EF與⊙O相切,

(2)∵BC為⊙O的直徑,
∴BG⊥AC,
∵∠A=∠ABC,
∴△ABG∽△BCD,
AB
BC
=
AG
BD

∵OD⊥EF,AC⊥EF,
∴OD∥AC,
∵OB=OC,
∴BD=AD,
∵AB=12,
∴BD=AD=6,
∵BC=10,
∴AC=BC=10,
12
10
=
AG
6
,
∴AG=7.2,
∴CG=AC-AG=10-7.2=2.8.
點評:本題主要考察相似三角形的判定與性質(zhì)、圓周角定理、切線的判定、余角的概念與性質(zhì)、等腰三角形的性質(zhì)及平行線的性質(zhì)等知識點,關(guān)鍵在于運用數(shù)形結(jié)合的思想,結(jié)合相關(guān)性質(zhì)定理,正確的做出輔助線,推出∠ODC=∠EDB,
OD⊥EF;通過求證△ABG∽△BCD,正確的推出關(guān)于對應(yīng)邊的比例式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)若實數(shù)a與-3互為相反數(shù),則a的值為( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)春節(jié)假期,全國收費公路7座以下小型客車實行免費通行.據(jù)交通運輸部統(tǒng)計,春節(jié)期間,全國收費公路(除四川、西藏、海南外)共免收通行費846 000 000元.把846 000 000用科學(xué)記數(shù)法表示應(yīng)為( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)如圖,點P是⊙O的弦AB上任一點(與A,B均不重合),點C在⊙O上,PC⊥OP,已知AB=8,設(shè)BP=x,PC2=y,y與x之間的函數(shù)圖象大致是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)如圖,直線y=2x-1與反比例函數(shù)y=
kx
的圖象交于A,B兩點,與x軸交于C點,已知點A的坐標(biāo)為(-1,m).
(1)求反比例函數(shù)的解析式;
(2)若P是x軸上一點,且滿足△PAC的面積是6,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•燕山區(qū)一模)閱讀下列材料:
問題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點,且∠EAF=45°. 判斷線段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.

小明同學(xué)的想法是:已知條件比較分散,可以通過旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是他將△DAF繞點A順時針旋轉(zhuǎn)90°,得到△BAH,然后通過證明三角形全等可得出結(jié)論.
請你參考小明同學(xué)的思路,解決下列問題:
(1)圖(1)中線段BE、EF、FD之間的數(shù)量關(guān)系是
EF=BE+DF
EF=BE+DF

(2)如圖(2),已知正方形ABCD邊長為5,E、F分別是BC、CD邊上的點,且∠EAF=45°,AG⊥EF于點G,則AG的長為
5
5
,△EFC的周長為
10
10
;
(3)如圖(3),已知△AEF中,∠EAF=45°,AG⊥EF于點G,且EG=2,GF=3,則△AEF的面積為
15
15

查看答案和解析>>

同步練習(xí)冊答案