0  441776  441784  441790  441794  441800  441802  441806  441812  441814  441820  441826  441830  441832  441836  441842  441844  441850  441854  441856  441860  441862  441866  441868  441870  441871  441872  441874  441875  441876  441878  441880  441884  441886  441890  441892  441896  441902  441904  441910  441914  441916  441920  441926  441932  441934  441940  441944  441946  441952  441956  441962  441970  447090 

3、已知一次函數(shù)y=kx+b,當(dāng)-3≤x≤1時(shí),對應(yīng)y的值為1≤y≤9.則k·b的值(  )

(A)14     (B)-6  

(C) -6或21  (D) -6或14

[命題意圖]考查一次函數(shù)的增減性,試題亮點(diǎn)是滲透了分類討論思想,許多學(xué)生沒有進(jìn)行分類求解,選A或B

[參考答案]D

[試題來源]原創(chuàng)題

試題詳情

2、如圖,圓柱形開口杯底部固定在長方體水池底,向水池勻速注入水(倒在杯外),水池中水面高度是h,注水時(shí)間為t,則ht之間的關(guān)系大致為下圖中的  (  )

  A     B    C    D

[命題意圖]探索具體問題中的數(shù)量關(guān)系和變化規(guī)律類問題,考綱要求D級靈活運(yùn)用,這類問題情境來源于生活,如龜兔賽跑,烏鴉喝水等,重視對學(xué)生學(xué)習(xí)數(shù)學(xué)知識與技能的結(jié)果和過程的評價(jià)。

[參考答案]  B

[試題來源]改編題

試題詳情

1、下列實(shí)數(shù),sin30°,0.1414,,0.383383338…… ,  22/7中,無理數(shù)的個(gè)數(shù)是

A、2個(gè) B、3個(gè) C、4個(gè) D、5個(gè)

[命題意圖]考查學(xué)生對無理數(shù)的認(rèn)識,無理數(shù)的概念比較抽象,講評時(shí),要求學(xué)生了解常見無理數(shù)的四種形式。

常見無理數(shù):含有π的的式子

       根號形(開方開不盡的)

       構(gòu)造型

       三角函數(shù)形(值不是有理數(shù))

[參考答案]  B

[試題來源]原創(chuàng)題

試題詳情

18.一種電訊信號轉(zhuǎn)發(fā)裝置的發(fā)射直徑為31km.現(xiàn)要求:在一邊長為30km的正方形城區(qū)選擇若干個(gè)安裝點(diǎn),每個(gè)點(diǎn)安裝一個(gè)這種轉(zhuǎn)發(fā)裝置,使這些裝置轉(zhuǎn)發(fā)的信號能完全覆蓋這個(gè)城市.問:

(1)能否找到這樣的4個(gè)安裝點(diǎn),使得這些點(diǎn)安裝了這種轉(zhuǎn)發(fā)裝置后能達(dá)到預(yù)設(shè)的要求?

(2)至少需要選擇多少個(gè)安裝點(diǎn),才能使這些點(diǎn)安裝了這種轉(zhuǎn)發(fā)裝置后達(dá)到預(yù)設(shè)的要求?

答題要求:請你在解答時(shí),畫出必要的示意圖,并用必要的計(jì)算、推理和文字來說明你的理由.(下面給出了幾個(gè)邊長為30km的正方形城區(qū)示意圖,供解題時(shí)選用)

 (2008年無錫,本題考查知識點(diǎn)很多,對提高學(xué)生審題能力,分析問題能力有很大幫助,有利于學(xué)生將自己的思維過程有條理的表達(dá)出來, 有利于學(xué)生學(xué)好數(shù)學(xué)的思維品質(zhì)的培養(yǎng))

答案:(1)將圖1中的正方形等分成如圖的四個(gè)小正方形,將這4個(gè)轉(zhuǎn)發(fā)裝置安裝在這4個(gè)小正方形對角線的交點(diǎn)處,此時(shí),每個(gè)小正方形的對角線長為,每個(gè)轉(zhuǎn)發(fā)裝置都能完全覆蓋一個(gè)小正方形區(qū)域,故安裝4個(gè)這種裝置可以達(dá)到預(yù)設(shè)的要求.

(圖案設(shè)計(jì)不唯一)

(2)將原正方形分割成如圖2中的3個(gè)矩形,使得.將每個(gè)裝置安裝在這些矩形的對角線交點(diǎn)處,設(shè),則,

,得,

,

即如此安裝3個(gè)這種轉(zhuǎn)發(fā)裝置,也能達(dá)到預(yù)設(shè)要求.

或:將原正方形分割成如圖2中的3個(gè)矩形,使得,的中點(diǎn),將每個(gè)裝置安裝在這些矩形的對角線交點(diǎn)處,則,, ,即如此安裝三個(gè)這個(gè)轉(zhuǎn)發(fā)裝置,能達(dá)到預(yù)設(shè)要求.

要用兩個(gè)圓覆蓋一個(gè)正方形,則一個(gè)圓至少要經(jīng)過正方形相鄰兩個(gè)頂點(diǎn).如圖3,用一個(gè)直徑為31的去覆蓋邊長為30的正方形,設(shè)經(jīng)過,交于,連,則,這說明用兩個(gè)直徑都為31的圓不能完全覆蓋正方形

所以,至少要安裝3個(gè)這種轉(zhuǎn)發(fā)裝置,才能達(dá)到預(yù)設(shè)要求.

評分說明:示意圖(圖1、圖2、圖3)每個(gè)圖1分.

試題詳情

17.某公司有型產(chǎn)品40件,型產(chǎn)品60件,分配給下屬甲、乙兩個(gè)商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產(chǎn)品每件的利潤(元)如下表:

 
型利潤
型利潤
甲店
200
170
乙店
160
150

(1)設(shè)分配給甲店型產(chǎn)品件,這家公司賣出這100件產(chǎn)品的總利潤為(元),求關(guān)于的函數(shù)關(guān)系式,并求出的取值范圍;

(2)若公司要求總利潤不低于17560元,說明有多少種不同分配方案,并將各種方案設(shè)計(jì)出來;

(3)為了促銷,公司決定僅對甲店型產(chǎn)品讓利銷售,每件讓利元,但讓利后型產(chǎn)品的每件利潤仍高于甲店型產(chǎn)品的每件利潤.甲店的型產(chǎn)品以及乙店的型產(chǎn)品的每件利潤不變,問該公司又如何設(shè)計(jì)分配方案,使總利潤達(dá)到最大?

(2008年黃石市,考查學(xué)生運(yùn)用不等式組解決實(shí)際問題的能力及解決方案問題的思維方法)

答案:依題意,甲店型產(chǎn)品有件,乙店型有件,型有件,則

(1)

解得

(2)由,

,,39,40.

有三種不同的分配方案.

時(shí),甲店型38件,型32件,乙店型2件,型28件.

時(shí),甲店型39件,型31件,乙店型1件,型29件.

時(shí),甲店型40件,型30件,乙店型0件,型30件.

(3)依題意:

①當(dāng)時(shí),,即甲店型40件,型30件,乙店型0件,型30件,能使總利潤達(dá)到最大.

②當(dāng)時(shí),,符合題意的各種方案,使總利潤都一樣.

③當(dāng)時(shí),,即甲店型10件,型60件,乙店型30件,型0件,能使總利潤達(dá)到最大.

試題詳情

16.如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點(diǎn)C,使DC=BD,連結(jié)AC,過點(diǎn)DDEAC,垂足為E.

(1)求證:AB=AC;

(2)求證:DE為⊙O的切線;

(3)若⊙O的半徑為5,∠BAC=60°,求DE的長.

 (2008年施恩自治州,本題知識點(diǎn)有圓的直徑定義、圓的切線判別、等邊三角形概念、三角函數(shù)等,考查學(xué)生分析問題綜合運(yùn)用所學(xué)知識解決問題的能力)

答案:(1)證明:連接AD

     ∵AB是⊙O的直徑

     ∴∠ADB=90°

     又BD=CD

     ∴ADBC的垂直平分線

     ∴AB=AC

     (2)連接OD

     ∵點(diǎn)OD分別是AB、BC的中點(diǎn)

     ∴ODAC

     又DEAC

     ∴ODDE

     ∴DE為⊙O的切線

     (3)由AB=AC, ∠BAC=60°知∆ABC是等邊三角形

     ∵⊙O的半徑為5

     ∴AB=BC=10, CD=BC=5

     又∠C=60°

     ∴DE=CD·sin60°=

試題詳情

15.某校初三年級全體320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考分都以同一標(biāo)準(zhǔn)劃分成“不及格”、“合格”、“優(yōu)秀”三個(gè)等級,為了了解電腦培訓(xùn)的效果,用抽簽方式得到其中64名學(xué)生的兩次考試考分等級,所繪制的統(tǒng)計(jì)圖如圖所示,試結(jié)合圖示信息回答下列問題:

(1)這64名學(xué)生培訓(xùn)前考分的中位數(shù)所在的等級是      ;

(2)估計(jì)該校整個(gè)初三年級中,培訓(xùn)后考分等級為“優(yōu)秀”的學(xué)生有     名;

(3)你認(rèn)為上述估計(jì)合理嗎?為什么?

  答:        ,理由:                        。

(2009年興寧市羅浮中學(xué)中考數(shù)學(xué)模擬試題,考查學(xué)生對統(tǒng)計(jì)圖的掌握和理解)

答案:(1)不合格  (2)80名  (3)合理,理由,利用樣本的優(yōu)秀人數(shù)來詁計(jì)總體的優(yōu)秀人數(shù)

試題詳情

14.已知點(diǎn)A(-2,-c)向右平移8個(gè)單位得到點(diǎn)A兩點(diǎn)均在拋物線上,且這條拋物線與軸的交點(diǎn)的縱坐標(biāo)為-6,求這條拋物線的頂點(diǎn)坐標(biāo).

(2008年南通市,考查二次函數(shù)求頂點(diǎn)問題,綜合運(yùn)用解方程組,函數(shù)圖象的平移以及二次函數(shù)的頂點(diǎn)式)

 答案: 由拋物線軸交點(diǎn)的縱坐標(biāo)為-6,得=-6.

A(-2,6),點(diǎn)A向右平移8個(gè)單位得到點(diǎn)(6,6).

A兩點(diǎn)均在拋物線上,

  解這個(gè)方程組,得 

故拋物線的解析式是

∴拋物線的頂點(diǎn)坐標(biāo)為(2,-10).

試題詳情

13.兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,在同一條直線上,連結(jié)

(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識的字母);

(2)證明:

(2008年山東省泰安市,考查三角形全等的判別及學(xué)生有條理表達(dá)說理過程的能力)

答案(1)解:圖2中

證明如下:

均為等腰直角三角形

,

(2)證明:由(1)

試題詳情

12.如圖,A,B,C,D四張卡片上分別寫有四個(gè)實(shí)數(shù),從中任取兩張卡片.

A     B    C    D

 

(1)請列舉出所有可能的結(jié)果(用字母A,B,C,D表示);

(2)求取到的兩個(gè)數(shù)都是無理數(shù)的概率.

(2008浙江嘉興,考查概率)

答案:(1)所有可能的結(jié)果是:

(2)是無理數(shù),

取到的兩個(gè)數(shù)都是無理數(shù)就是取到卡片,概率是

試題詳情


同步練習(xí)冊答案