24.(山東理科16)函數(shù)y=loga(x+3)-1(a>0,a1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則的最小值為 .
23.(山東理科2).已知集合,則(B)
(A) (B) (C) (D)
22.(江西理科17).(本小題滿分12分)
已知函數(shù)在區(qū)間(0,1)內(nèi)連續(xù),且.
(1)求實(shí)數(shù)k和c的值;
(2)解不等式
21.(重慶理科13)若函數(shù)f(x) = 的定義域?yàn)镽,則a的取值范圍為_______.
20.(重慶理科2)命題“若,則”的逆否命題是( )
A.若,則或 B.若,則
C.若或,則 D.若或,則
19.(福建理科13)已知實(shí)數(shù)x、y滿足 ,則的取值范圍是__________;
18.(福建理科7)已知為R上的減函數(shù),則滿足的實(shí)數(shù)的取值范圍是(C)
A.(-1,1) B.(0,1)
C.(-1,0)(0,1) D.(-,-1)(1,+)
17.(福建理科3)已知集合A=,B=,且,則實(shí)數(shù)的取值范圍是(C)
A. B. a<1 C. D.a(chǎn)>2
14.(湖北理科21)(本小題滿分14分)
已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知,求證,m=1,1,2…,n;
(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.
解:(Ⅰ)證:當(dāng)x=0或m=1時(shí),原不等式中等號(hào)顯然成立,下用數(shù)學(xué)歸納法證明:
當(dāng)x>-1,且x≠0時(shí),m≥2,(1+x)m>1+mx. 1
(i)當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)?i>x≠0,所以x2>0,即左邊>右邊,不等式①成立;
(ii)假設(shè)當(dāng)m=k(k≥2)時(shí),不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時(shí),因?yàn)?i>x>-1,所以1+x>0.又因?yàn)?i>x≠0,k≥2,所以kx2>0.
于是在不等式(1+x)k>1+kx兩邊同乘以1+x得
(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,
所以(1+x)k+1>1+(k+1)x,即當(dāng)m=k+1時(shí),不等式①也成立.
綜上所述,所證不等式成立.
(Ⅱ)證:當(dāng)
而由(Ⅰ),
(Ⅲ)解:假設(shè)存在正整數(shù)成立,
即有()+=1.、
又由(Ⅱ)可得
()+
+與②式矛盾,
故當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.
故只需要討論n=1,2,3,4,5的情形;
當(dāng)n=1時(shí),3≠4,等式不成立;
當(dāng)n=2時(shí),32+42=52,等式成立;
當(dāng)n=3時(shí),33+43+53=63,等式成立;
當(dāng)n=4時(shí),34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;
當(dāng)n=5時(shí),同n=4的情形可分析出,等式不成立.
綜上,所求的n只有n=2,3.
15(湖南理科2).不等式的解集是( D )
A. B. C. D.
16(湖南理科14).設(shè)集合,,,
(1)的取值范圍是 ;
(2)若,且的最大值為9,則的值是 .
(1)(2)
13.(湖北理科3)3.設(shè)P和Q是兩個(gè)集合,定義集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于(B)
A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com