闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
12.設(shè)全集.集合.則在直角平面上集合內(nèi)所有元素的對應(yīng)點闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴椤㈡洟鏁愰崱娆樻К缂備胶鍋撻崕鎶解€﹂悜钘夎摕闁哄洨鍠撶粻楣冩煟閹伴潧澧柣婵囨⒒缁辨帡鎮欓鈧崝銈夋煟韫囨梻绠為柛鈺冨仱楠炲鏁傞挊澶夋睏闁诲氦顫夊ú鏍归崒鐐叉辈闁跨喓濮甸埛鎴︽煙閼测晛浠滈柍褜鍓氬ú鐔煎箖瑜戠粻娑樷槈濡偐鏋€闂備礁缍婂Λ鍧楁倿閿曞倸纾婚悗锝庡枟閻撴洘銇勯幇鍓佹偧缂佺姵锕㈤弻锝夋偄閺夋垵顫囧┑顔硷龚濞咃絿妲愰幒鎳崇喖鎼归崷顓熷櫙闂傚倷娴囬褏鎹㈤幋婵堟殕闁告稑锕g换鍡涙煟閵忊懚鍦矆鐎n偁浜滈柡宥冨妽閻ㄦ垶銇勯弬鍖¤含婵﹨娅i幉鎾礋椤掆偓閸撳綊姊洪幖鐐插濞存粏娉涢锝夘敃閿濆啫浜濋梺鍛婂姀閺呮繈宕㈡禒瀣厵闁稿繗鍋愰弳姗€鏌涢妸銉吋鐎规洦鍨跺濠氬Ψ閿旀儳骞嶉梻浣告啞閸垶宕愰弽顐熷亾濮樼偓瀚�查看更多

 

題目列表(包括答案和解析)

設(shè)全集,集合A={} ,則在直角平面上集合內(nèi)所有元素的對應(yīng)點構(gòu)成的圖形的面積等于__     ___.

查看答案和解析>>

設(shè)全集,集合A={} ,則在直角平面上集合內(nèi)所有元素的對應(yīng)點構(gòu)成的圖形的面積等于__     ___.

查看答案和解析>>

設(shè)全集U={(x,y)|x,y∈R},集合A={(x,y)|xsinα+ycosα-2=0,α∈R},則在直角平面上集合CuA內(nèi)所有元素的對應(yīng)點構(gòu)成的圖形的面積等于

查看答案和解析>>

設(shè)全集U={(x,y)|x,y∈R},集合A={(x,y)|xsinα+ycosα-2=0,α∈R},則在直角平面上集合CuA內(nèi)所有元素的對應(yīng)點構(gòu)成的圖形的面積等于   

查看答案和解析>>

設(shè)全集U={(x,y)|x,y∈R},集合A={(x,y)|xsinα+ycosα-2=0,α∈R},則在直角平面上集合CuA內(nèi)所有元素的對應(yīng)點構(gòu)成的圖形的面積等于________.

查看答案和解析>>

 

一、填空題

1.   2.    3.2   4.  5. i100   6.  7. 2

8.    9.   10.   11.   12.

二、選擇題

13.   14.A  15.A.  16. D

三、解答題

17.

   (1)由題意可得:=5----------------------------------------------------------(2分)

由:  得:=314---------------------------------------(4分)

或:

   (2)方法一:由:------(1分)

        或---------(1分)

得:0.0110-----------------------------------------------------------------(1分)

方法二:由:

得:-----------------------------------------------------------------(1分)

由:點和點的縱坐標相等,可得點和點關(guān)于點對稱

即:------------------------------------------------------------(1分)

得:0.011-----------------------------------------------------------------------(1分)

 

 

 

18.(1),是等腰三角形,

的中點,,--------------(1分)

底面.----(2分)

-------------------------------(1分)

于是平面.----------------------(1分)

   (2)過,連接----------------(1分)

平面,

,-----------------------------------(1分)

平面,---------------------------(1分)

就是直線與平面所成角。---(2分)

中,

----------------------------------(2分)

所以,直線與平面所成角--------(1分)

19.解:

   (1)函數(shù)的定義域為;------------------------------------(1分)

當(dāng);當(dāng);--------------------------------------------------(1分)

所以,函數(shù)在定義域上不是單調(diào)函數(shù),------------------(1分)

所以它不是“類函數(shù)” ------------------------------------------------------------------(1分)

   (2)當(dāng)小于0時,則函數(shù)不構(gòu)成單調(diào)函數(shù);(1分)

當(dāng)=0時,則函數(shù)單調(diào)遞增,

但在上不存在定義域是值域也是的區(qū)間---------------(1分)

當(dāng)大于0時,函數(shù)在定義域里單調(diào)遞增,----(1分)

要使函數(shù)是“類函數(shù)”,

即存在兩個不相等的常數(shù) ,

使得同時成立,------------------------------------(1分)

即關(guān)于的方程有兩個不相等的實根,--------------------------------(2分)

,--------------------------------------------------------------------------(1分)

亦即直線與曲線上有兩個不同的交點,-(1分)

所以,-------------------------------------------------------------------------------(2分)

20.解:

   (1)

,由,得數(shù)列構(gòu)成等比數(shù)列------------------(3分)

,,數(shù)列不構(gòu)成等比數(shù)列--------------------------------------(1分)

   (2)由,得:-------------------------------------(1分)

---------------------------------------------------------(1分)

----------------------------------------------(1分)

----(1分)

------------------------------------------------------------------(1分)

---------------------------------------------------------------------(1分)

   (3)若對任意,不等式恒成立,

即:

-------------------------------------------(1分)

令:,當(dāng)時,有最大值為0---------------(1分)

令:

------------------------------------------------------(1分)

當(dāng)

---------------------------------------------------------(1分)

所以,數(shù)列從第二項起單調(diào)遞減

當(dāng)時,取得最大值為1-------------------------------(1分)

所以,當(dāng)時,不等式恒成立---------(1分)

21. 解:

   (1)雙曲線焦點坐標為,漸近線方程---(2分)

雙曲線焦點坐標,漸近線方程----(2分)

   (2)

得方程: -------------------------------------------(1分)

設(shè)直線分別與雙曲線的交點、  的坐標分別為,線段 中點為坐標為

----------------------------------------------------------(1分)

得方程: ----------------------------------------(1分)

設(shè)直線分別與雙曲線的交點、  的坐標分別為,線段 中點為坐標為

---------------------------------------------------(1分)

,-----------------------------------------------------------(1分)

所以,線段不相等------------------------------------(1分)

   (3)

若直線斜率不存在,交點總個數(shù)為4;-------------------------(1分)

若直線斜率存在,設(shè)斜率為,直線方程為

直線與雙曲線

    得方程:   ①

直線與雙曲線

     得方程:    ②-----------(1分)

 

的取值

直線與雙曲線右支的交點個數(shù)

直線與雙曲線右支的交點個數(shù)

交點總個數(shù)

1個(交點

1個(交點

2個

1個(

1個(,

2個

1個(與漸進線平行)

1個(理由同上)

2個

2個(,方程①兩根都大于2)

1個(理由同上)

3個

2個(理由同上)

1個(與漸進線平行)

3個

2個(理由同上)

2個(,方程②

兩根都大于1)

4個

得:-------------------------------------------------------------------(3分)

由雙曲線的對稱性可得:

的取值

交點總個數(shù)

2個

2個

3個

3個

4個

得:-------------------------------------------------------------------(2分)

綜上所述:(1)若直線斜率不存在,交點總個數(shù)為4;

   (2)若直線斜率存在,當(dāng)時,交點總個數(shù)為2個;當(dāng) 時,交點總個數(shù)為3個;當(dāng)時,交點總個數(shù)為4個;---------------(1分)

 

 

 


同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�