B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長(zhǎng)為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實(shí)根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到
(1)求實(shí)數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

13.    14.2      15. 

16.

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                                                 …………10分

                                                                                      

即函數(shù)的值域是                                                            …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

                …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

         …4分

       (II)由(I)知平面ABCD

           ∴平面PAB⊥平面ABCD.                        …………4分

         在PB上取一點(diǎn)M,作MNAB,則MN⊥平面ABCD,

           設(shè)MN=h

           則

                                …………6分

           要使

           即MPB的中點(diǎn).                                                                  …………8分

       (Ⅲ)連接BD交AC于O,因?yàn)锳B//CD,AB=2,CD=1,由相似三角形易得BO=2OD

    ∴O不是BD的中心……………………10分

    又∵M(jìn)為PB的中點(diǎn)

    ∴在△PBD中,OM與PD不平行

    ∴OM所以直線與PD所在直線相交

    又OM平面AMC

    ∴直線PD與平面AMC不平行.……………………12分

    20.(本小題滿分12分)

           解:由圖可知M(60,98),N(500,230),C(500,168),MN//CD.

    設(shè)這兩種方案的應(yīng)付話費(fèi)與通話時(shí)間的函數(shù)關(guān)系分別為

    ………………2分

    ……………………4分

       (Ⅰ)通話2小時(shí),兩種方案的話費(fèi)分別為116元、168元.………………6分

       (Ⅱ)因?yàn)?sub>

    故方案B從500分鐘以后,每分鐘收費(fèi)0.3元.………………8分

    (每分鐘收費(fèi)即為CD的斜率)

       (Ⅲ)由圖可知,當(dāng);

    當(dāng);

    當(dāng)……………………11分

    綜上,當(dāng)通話時(shí)間在()時(shí),方案B較方案A優(yōu)惠.………………12分

    21.(本小題滿分12分)

    解:(Ⅰ)設(shè)的夾角為,則的夾角為

    ……………………2分

    ………………4分

    (II)設(shè)

                                                 …………5分

          

           由                            …………6分

                                …………7分

           上是增函數(shù)

           上為增函數(shù)

           當(dāng)m=2時(shí),的最小值為         …………10分

           此時(shí)P(2,0),橢圓的另一焦點(diǎn)為,則橢圓長(zhǎng)軸長(zhǎng)

          

              …………12分

    22.(本小題滿分14分)

           解:(I)                           …………2分

           由                                                           …………4分

          

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                         …………6分

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                          …………8分

       (II)當(dāng)上單調(diào)遞增,因此

          

                                                                                                          …………10分

           上遞減,所以值域是   

                                                                                 …………12分

           因?yàn)樵?sub>

                                                                                                                 …………13分

           使得成立.

                                                                                                                 …………14分

     

     

     


    同步練習(xí)冊(cè)答案