人數(shù) 查看更多

 

題目列表(包括答案和解析)

人們通過研究發(fā)現(xiàn)1,3,6,10,…這些數(shù)能表示三角形,所以將其稱為三角形數(shù),類似地,1,4,9,16…這樣的數(shù)稱為正方形數(shù),下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( 。
A、289B、1024C、1225D、1378

查看答案和解析>>

數(shù)學(xué)選擇題共有四個(gè)選擇支,有且只有一個(gè)是正確的,某人隨機(jī)選一個(gè)作答,求這個(gè)人做一個(gè)數(shù)學(xué)選擇題答對(duì)與否的分布列.

查看答案和解析>>

精英家教網(wǎng)數(shù)學(xué)課上,張老師用六根長(zhǎng)度均為a的塑料棒搭成了一個(gè)正三棱錐(如圖所示),然后他將其中的兩根換成長(zhǎng)度分別為在
2
a
3
a
的塑料棒、又搭成了一個(gè)三棱錐,陳成同學(xué)邊聽課邊動(dòng)手操作,也將其中的兩根換掉,但沒有成功,不能搭成三棱錐,如果兩人都將BD換成了長(zhǎng)為
3
a
的塑料棒.
(1)試問張老師換掉的另一根塑料棒是什么,而陳成同學(xué)換掉的另一根塑料棒又是什么?請(qǐng)你用學(xué)到的數(shù)學(xué)知識(shí)解釋陳成同學(xué)失敗的原因;
(2)試證:平面ABD⊥平面CBD;
(3)求新三棱錐的外接球的表面積.

查看答案和解析>>

人的年齡x與人體脂肪含量的百分?jǐn)?shù)y的回歸方程為
?
y
=0.577x-0.448
,如果某人36歲,那么這個(gè)人的脂肪含量( 。
A、一定20.3%
B、在20.3%附近的可能性比較大
C、無任何參考數(shù)據(jù)
D、以上解釋都無道理

查看答案和解析>>

14、數(shù)學(xué)老師給出一個(gè)函數(shù)f(x),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì)
甲:在(-∞,0]上函數(shù)單調(diào)遞減;
乙:在[0,+∞)上函數(shù)單調(diào)遞增;
丙:在定義域R上函數(shù)的圖象關(guān)于直線x=1對(duì)稱;
。篺(0)不是函數(shù)的最小值.
老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確. 那么,你認(rèn)為
說的是錯(cuò)誤的.

查看答案和解析>>

題號(hào)

答案

1.解析:命題“”的否命題是:“”,故選C.

2.解析:由已知,得:,故選

3.解析:若,則,解得.故選

4.解析:由題意得,又

故選

5.解析:設(shè)成績(jī)?yōu)?sub>環(huán)的人數(shù)是,由平均數(shù)的概念,得:

故選

6.解析:是偶函數(shù);是指數(shù)函數(shù);是對(duì)數(shù)函數(shù).故選

7.解析:①的三視圖均為正方形;②的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為圓;④的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為正方形.故選

8.解析:程序的運(yùn)行結(jié)果是,選

9.解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉淼?sub>.答案:

10.解析:特殊值法:令,有.故選

 

題號(hào)

11

12

13

14

15

答案

11.解析:

12.解析:令,則,令,則

同理得即當(dāng)時(shí),的值以為周期,

所以

13.解析:由圖象知:當(dāng)函數(shù)的圖象過點(diǎn)時(shí),

取得最大值為2.

14. (坐標(biāo)系與參數(shù)方程選做題)解析:將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,圓上的動(dòng)點(diǎn)到直線的距離的最大值就是圓心到直線的距離再加上半徑.故填

15. (幾何證明選講選做題)解析:連結(jié),

則在中:,

,所以,

三.解答題:本大題共6小題,滿分80分.解答須寫出文字說明.證明過程和演算步驟.

16.析:主要考察三角形中的邊角關(guān)系、向量的坐標(biāo)運(yùn)算、二次函數(shù)的最值.

解:(Ⅰ)∵,∴,     ………………3分

又∵,∴.    ……………………………………………5分

(Ⅱ)   ……………………………………………6分

,  ………………………8分

,∴.   ……………10分

∴當(dāng)時(shí),取得最小值為.   …………12分

 

17.析:主要考察立體幾何中的位置關(guān)系、體積.

解:(Ⅰ)證明:連結(jié),則//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴,

.  …………………………………………5分

(Ⅱ)證明:作的中點(diǎn)F,連結(jié)

的中點(diǎn),∴,

∴四邊形是平行四邊形,∴ . ………7分

的中點(diǎn),∴,

,∴

∴四邊形是平行四邊形,//,

,

∴平面.  …………………………………9分

平面,∴.  ………………10分

(3). ……………………………11分

.  ……………………………14分

 

18.析:主要考察事件的運(yùn)算、古典概型.

解:設(shè)“朋友乘火車、輪船、汽車、飛機(jī)來”分別為事件,則,,,且事件之間是互斥的.

(Ⅰ)他乘火車或飛機(jī)來的概率為………4分

(Ⅱ)他乘輪船來的概率是,

所以他不乘輪船來的概率為. ………………8分 

(Ⅲ)由于

所以他可能是乘飛機(jī)來也可能是乘火車或汽車來的. …………………12分 

19.析:主要考察函數(shù)的圖象與性質(zhì),導(dǎo)數(shù)的應(yīng)用.

解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,得,………………1分

,∴. …………2分

,∴. ……………………………4分

,即.  ……………………6分

. ……………………………………………………7分

 (Ⅱ)由(Ⅰ)知,∴

,∴.   …………………9分

0

+

0

極小

極大

.  ………………………14分

 

20.析:主要考察直線.圓的方程,直線與圓的位置關(guān)系.

解:(Ⅰ)(法一)∵點(diǎn)在圓上,    …………………………2分

∴直線的方程為,即.   ……………………………5分

(法二)當(dāng)直線垂直軸時(shí),不符合題意.     ……………………………2分

當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為,即

則圓心到直線的距離,即:,解得,……4分

∴直線的方程為.    ……………………………………………5分

(Ⅱ)設(shè)圓,∵圓過原點(diǎn),∴

∴圓的方程為.…………………………7分

∵圓被直線截得的弦長(zhǎng)為,∴圓心到直線的距離:

.   …………………………………………9分

整理得:,解得. ……………………………10分

,∴.   …………………………………………………………13分

∴圓.  ……………………………………14分

 

21.析:主要考察等差、等比數(shù)列的定義、式,求數(shù)列的和的方法.

解:(Ⅰ)設(shè)的公差為,則:,,

,,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當(dāng)時(shí),,由,得.     …………………5分

當(dāng)時(shí),,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分


同步練習(xí)冊(cè)答案