(Ⅲ)設(shè)是方程的實(shí)數(shù)根.求證:對(duì)于定義域中任意的.當(dāng).且時(shí).. 查看更多

 

題目列表(包括答案和解析)

 已知是方程的兩個(gè)不等實(shí)根,

函數(shù)的定義域?yàn)?sub>.

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)證明:函數(shù)在其定義域上是增函數(shù);

(3)在(1)的條件下,設(shè)函數(shù),  

若對(duì)任意的,總存在,使得成立,

求實(shí)數(shù)的取值范圍.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

設(shè)m是給定的實(shí)數(shù),函數(shù)f(x)=x-ln(x+m)的定義域?yàn)镈.
(Ⅰ)求m的取值范圍,使得f(x)≥0對(duì)任意的x∈D均成立;
(Ⅱ)求證:對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.

查看答案和解析>>

設(shè)m是給定的實(shí)數(shù),函數(shù)f(x)=x-ln(x+m)的定義域?yàn)镈.
(Ⅰ)求m的取值范圍,使得f(x)≥0對(duì)任意的x∈D均成立;
(Ⅱ)求證:對(duì)任意的m∈(1,+∞),方程f(x)=0在D內(nèi)有且只有兩個(gè)實(shí)數(shù)根.

查看答案和解析>>

已知a,b是方程4x2-4kx-1=0(k∈R)的兩個(gè)不等實(shí)根,函數(shù)f(x)=
2x-k
x2+1
的定義域?yàn)閇a,b].
(1)當(dāng)k=0時(shí),求函數(shù)f(x)的值域;
(2)證明:函數(shù)f(x)在其定義域[a,b]上是增函數(shù);
(3)在(1)的條件下,設(shè)函數(shù)g(x)=x3-3m2x+
3
5
 
(-
1
2
≤x≤
1
2
 0<m<
1
2
)
,若對(duì)任意的x1∈[-
1
2
,
1
2
]
,總存在x2∈[-
1
2
,
1
2
]
,使得f(x2)=g(x1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知a,b是方程4x2-4kx-1=0(k∈R)的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)閇a,b].
(1)當(dāng)k=0時(shí),求函數(shù)f(x)的值域;
(2)證明:函數(shù)f(x)在其定義域[a,b]上是增函數(shù);
(3)在(1)的條件下,設(shè)函數(shù),若對(duì)任意的,總存在,使得f(x2)=g(x1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

一、選擇題:

1.C 2.D3.A4.C 5.C6.A7.B  8.D9.B10.D11.B 12.B

二、填空題:

13、  14、  15、1   16、一   17、4  18、56  19、  20、 21、 22、4/9  23、②  24、 25、 26、①

三、解答題:

16、解: (Ⅰ),  

 ∴

 解得

(Ⅱ)由,得:,   

   

17、解:(1)

的最小正周期,  

且當(dāng)時(shí)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫(xiě)成開(kāi)區(qū)間不扣分).………6分

(2)當(dāng)時(shí),當(dāng),即時(shí)

所以.     

的對(duì)稱(chēng)軸.    

18、解:(Ⅰ)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件,

∵“兩球恰好顏色不同”共種可能,

解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn),

∵每次摸出一球得白球的概率為

∴“有放回摸兩次,顏色不同”的概率為

(Ⅱ)設(shè)摸得白球的個(gè)數(shù)為,依題意得:

,

,

,

19、(Ⅰ)證明:  連結(jié),交于點(diǎn),連結(jié)

是菱形, ∴的中點(diǎn).

  *點(diǎn)的中點(diǎn), ∴.   

平面平面, ∴平面.

(Ⅱ)解法一:

 平面,平面,∴ .

,∴

是菱形,  ∴.

,

平面.

,垂足為,連接,則,

所以為二面角的平面角.

,∴,.

在Rt△中,=,

.

∴二面角的正切值是.

解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,

,

. 

設(shè)平面的一個(gè)法向量為,

,得

,則,∴.   

平面,平面,

,∴.

是菱形,∴.

,∴平面.

是平面的一個(gè)法向量,

,

, 

∴二面角的正切值是.

20、解:圓的方程為,則其直徑長(zhǎng),圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),

,  

…6分

,

因此.   

據(jù)等差,, 

所以,,

即:方程為

21、解:(1)因?yàn)?sub>,

所以,滿(mǎn)足條件.  

又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根

所以函數(shù)是集合M中的元素.

(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根),

不妨設(shè),根據(jù)題意存在數(shù)

使得等式成立, 

因?yàn)?sub>,所以,與已知矛盾,

所以方程只有一個(gè)實(shí)數(shù)根;

(3)不妨設(shè),因?yàn)?sub>所以為增函數(shù),所以

  又因?yàn)?sub>,所以函數(shù)為減函數(shù),

  所以,

所以,即

所以. 

 

 


同步練習(xí)冊(cè)答案