19. 橢圓C的中心為坐標原點O.焦點在y軸上.離心率e = .橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0.m).與橢圓C交于相異兩點A.B.且.(1)求橢圓方程, (2)若.求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分) 橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且.(1)求橢圓方程;  (2)若,求m的取值范圍.

查看答案和解析>>

(本小題滿分14分) 如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C 長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;

(2)求點P的坐標;

(3)設M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

(本小題滿分14分)已知A、B、C是橢圓上的三點,其中點A的坐標為,BC過橢圓m的中心,且.(1)求橢圓的方程;(2)過點的直線l(斜率存在時)與橢圓m交于兩點P,Q,設D為橢圓m與y軸負半軸的交點,且.求實數(shù)t的取值范圍.

查看答案和解析>>

(本小題滿分14分)

   在直角坐標系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于

坐標原點O.橢圓與圓C的一個交點到橢圓兩焦點的距離之和為10。

  (1)求圓C的方程;

  (2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓的右焦點F的距離等于線段

OF的長,若存在求出Q的坐標;若不存在,請說明理由。

查看答案和解析>>

(本小題滿分14分)

已知中心在原點,焦點在x軸上的橢圓C的離心率為,且經(jīng)過點(-1,),過點P(2,1)的直線l與橢圓C在第一象限相切于點M.

(1)求橢圓C的方程;

(2)求直線l的方程以及點M的坐標;

(3)是否存在過點P的直線l與橢圓C相交于不同的兩點A,B,滿足·=?若存在,求出直線l的方程;若不存在,請說明理由.

 

查看答案和解析>>


同步練習冊答案