(2)設(shè),求證是等比數(shù)列.并求其通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>

已知{an}是

等比數(shù)列,a1=2,a3=18,{bn}是等差數(shù)列b1=2,b1+b2+b3+b4=a1+a2+a3>20

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和Sn;

(3)設(shè)Pn=b1+b4+b7+…+b3n2,Qn=b10+b12+b14+…+b2n+8,其中n=1, 2……,試比較Pn與Qn的大小并證明你的結(jié)論。

查看答案和解析>>

已知{an}是
等比數(shù)列,a1=2,a3=18,{bn}是等差數(shù)列b1=2,b1+b2+b3+b4=a1+a2+a3>20
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)Pn=b1+b4+b7+…+b3n2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,試比較Pn與Qn的大小并證明你的結(jié)論。

查看答案和解析>>

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>

已知{an}是等比數(shù)列,a1=2,a3=18;{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn的公式;
(3)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,試比較Pn與Qn的大小,并證明你的結(jié)論.

查看答案和解析>>

 

 

一、選擇題

 1―6  DBDCDD   7―12  ADCDCD

二、填空題

13.3   14.       15.-25    16.

三、解答題

17.(滿分12分)

解:       ∴       …………3分

  ∴不等式a+2     ∵a<0    ∴<1+  ……5分

①當(dāng)時(shí),<0,不等式無解

②當(dāng)時(shí),<0無解

③ 當(dāng)時(shí),

xx                …………10分

綜上所述,原不等式的解集為:

①當(dāng)時(shí),不等式無解

②當(dāng)時(shí),不等式解集為

xx                …………12分

18.(滿分12分)

(1)甲乙兩隊(duì)各五名球員,一個(gè)間隔一個(gè)排序,出場(chǎng)序的種數(shù)是……3分

 

(2)甲隊(duì)五名球員,取連續(xù)兩名的方法數(shù)為4。若不考慮乙隊(duì),甲隊(duì)有具只有連續(xù)兩名隊(duì)員射中的概率為                      …………………7分

(3)甲、乙兩隊(duì)點(diǎn)球罰完,再次出現(xiàn)平局,可能的情況以下6種,即均未中球,均中1球,…均中5球,故所求概率為

       …………………12分

19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

又BD⊥AD, ∴BD⊥A1D                                  …………………2分

又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

(2)連B1C,則B1C⊥BE,易證Rt△CBE∽R(shí)t△CBB1,

,又E為CC1中點(diǎn),∴

                                           ……………………5分

取CD中點(diǎn)M,連BM,則BM⊥平面CD1,作MN⊥DE于N,連NB,則∠BNM是二面角B―DE―C的平面角            ……………………7分

Rt△CED中,易求得MN=中,∠BNM=

∴∠BNM=arctan                                       …………………10分

(3)易證BN長(zhǎng)就是點(diǎn)B到平面A1DE的距離                    …………………11分

∴∠BN=                           …………………12分

20.(滿分12分)

解:(Ⅰ)由 。           …………………2分

b2=ac及正弦定理得sin2B=sin A sin C.

于是    cot A + cot C =

=

=

=

=

=

=                              …………………7分

(Ⅱ)由      ?      =,得,又由,可得,即。

由余弦定理

                                …………………9分

所以                                          …………………12分

21.(滿分13分)

解:(Ⅰ)              …………………4分

(Ⅱ)…………………6分

=                                       …………………8分

                                     …………………9分

∴數(shù)列是等比數(shù)列,且       …………………10分

(Ⅲ)由(Ⅱ)得:    …………………11分

………………12分

                        ………………13分

22.(滿分13分)

解:(Ⅰ)∵橢圓方程為ab>0,c>0,c2=a2-b2

,FP的中點(diǎn)D的坐標(biāo)為()……2分

直線AB的方程為:∵D在直線AB上∴……3分

化簡(jiǎn)得    ∴…………………4分

(Ⅱ)…………5分   

       =-3  ∴                                        …………………6分

由(Ⅰ)得:                                                              …………………7分

∴橢圓方程為:                                                  …………………8分

(Ⅲ)設(shè)直線QA1QA2斜率分別為k1、k2,則

解得……10分由

解得

直線MN的方程為y=0

化簡(jiǎn)得

  ∴

即直線MN與x軸交于定點(diǎn)()      ……………13分


同步練習(xí)冊(cè)答案