題目列表(包括答案和解析)
設(shè)△的內(nèi)角所對邊的長分別為,且有
(Ⅰ)求角A的大。
(Ⅱ)若,,為的中點,求的長。
【解析】(1)由題,,則,故,即.
(2)因,,因為的中點,故,則,所以
已知函數(shù)(為實數(shù)).
(Ⅰ)當時,求的最小值;
(Ⅱ)若在上是單調(diào)函數(shù),求的取值范圍.
【解析】第一問中由題意可知:. ∵ ∴ ∴.
當時,; 當時,. 故.
第二問.
當時,,在上有,遞增,符合題意;
令,則,∴或在上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵ ∴ ∴.
當時,; 當時,. 故.
(Ⅱ) .
當時,,在上有,遞增,符合題意;
令,則,∴或在上恒成立.∵二次函數(shù)的對稱軸為,且
∴或或或
或. 綜上
已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(I)求橢圓的方程;
(II)若過點(2,0)的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足(O為坐標原點),當< 時,求實數(shù)的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的<不等式,表示得到t的范圍。
解:(1)由題意知
已知函數(shù)在取得極值
(1)求的單調(diào)區(qū)間(用表示);
(2)設(shè),,若存在,使得成立,求的取值范圍.
【解析】第一問利用
根據(jù)題意在取得極值,
對參數(shù)a分情況討論,可知
當即時遞增區(qū)間: 遞減區(qū)間: ,
當即時遞增區(qū)間: 遞減區(qū)間: ,
第二問中, 由(1)知: 在,
,
在
從而求解。
解:
…..3分
在取得極值, ……………………..4分
(1) 當即時 遞增區(qū)間: 遞減區(qū)間: ,
當即時遞增區(qū)間: 遞減區(qū)間: , ………….6分
(2) 由(1)知: 在,
,
在
……………….10分
, 使成立
得:
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設(shè).由題意得.又因為,所以,
于是,,
所以,當,且時,取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且,因此,不妨設(shè),
且。
由得定義知,,
又因為
所以
所以,
對數(shù)表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com