題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA底面ABCD,DAB為直角,AB‖CD,AD=CD=24B,E、F分別為PC、CD的中點(diǎn).
(Ⅰ)試證:CD平面BEF;
(Ⅱ)設(shè),且二面角E-BD-C的平面角大于,求的取值范圍.
如圖,在四棱錐P-ABCD中,PA底面ABCD,DAB為直角,AB∥CD,AD=CD=2AB,E、F分別為PC、CD的中點(diǎn).
(Ⅰ)試證:AB平面BEF;
(Ⅱ)設(shè)PA=k ·AB,若平面與平面的夾角大于,求k的取值范圍.
一、選擇題 (每小題5分)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
C
A
A
A
D
C
B
C
B
D
B
二、填空題(每小題5分)
13. 14. 15.8 16. ①②③
三.解答題
17.解 (1)由得:, ……………………………… 2分
即, ……………… 4分
當(dāng)時(shí),,
因?yàn)?sub>,有,,得
故 …………………………… 8分
(2)∵是奇函數(shù),且將的圖象先向右平移個(gè)單位,再向上平移1個(gè)單位,可以得到的圖象,∴是滿足條件的一個(gè)平移向量.……12分
18.解:設(shè)表示一個(gè)基本事件,則擲兩次骰子包括:,,,,, ,,,……,,,共36個(gè)基本事件…………2分.
(1)用表示事件“”,則的結(jié)果有,,,共3個(gè)基本事. ∴. ………………6分
(2)用表示事件“”,則的結(jié)果有,,,,,,,,共8個(gè)基本事件. ………………9分
∴. ………………12分
19.(Ⅰ) 解法一:
(Ⅰ)證:由已知DF∥AB且DAD為直角,故ABFD是矩形,從而CDBF. ……… 4分
又PA底面ABCD,CDAD,故知CDPD.在△PDC中,E、F分別PC、CD的中點(diǎn),故EF∥PD,從而CDEF,由此得CD面BEF.
………7分
(Ⅱ)連結(jié)AC交BF于G.易知G為AC的中點(diǎn).連接EG,則在△PAC中易知EC∥PA.又因PA底面ABCD,故BC底面ABCD.在底面ABCD中,過C作GHBD,垂足為H,連接EH.由三垂線定理知EHBD.從而EHG為二面角E-BD-C的平面角. ………8分
設(shè)AB=a,則在△PAC中,有
BG=PA=ka.
以下計(jì)算GH,考察底面的平面圖(如答(19)圖2).連結(jié)GD.
因S△CBD=BD?GH=GB?OF.故GH=.
在△ABD中,因?yàn)?i>AB=a,AD=
而GB=FB=AD-a.DF-AB,從而得GH== =
因此tanEHG== ………10分
由k>0知是銳角,故要使>,必須>tan=
解之得,k的取值范圍為k> ………12分
解法二:
(Ⅰ)如圖,以A為原點(diǎn),AB所在直線為x軸,AD所在直線為y軸,AP所在直線為:軸建立空間直角坐標(biāo)系,設(shè)AB=a,則易知點(diǎn)A,B,C,D,F的坐標(biāo)分別為
A(0,0,0),B(a,0,0),C(
F(a,
從而=(
?=0,故 .
設(shè)PA=b,則P(0,0,b),而E為PC中點(diǎn).故 第(20)
?=0,故.
由此得CD面BEF.
(Ⅱ)設(shè)E在xOy平面上的投影為G,過G作GHBD垂足為H,由三垂線定理知EHBD.
從而EHG為二面角E-BD-C的平面角.
由PA=k?AB得P(0,0,ka),E,G(a,a,0).設(shè)H(x,y,0),則=(x-a,y-a,0), =(-a,
①又因=(x,a,y,0),且與的方向相同,故=,即2x+y=
tanEHG===.由k>0知,EHC是銳角,由EHC>得tanEHG>tan即>故k的取值范圍為k>.
20.解
(1)當(dāng)n = 1時(shí),解出a1 = 3, (a1 = 0舍)
又4Sn = an2 + 2an-3 ①
當(dāng)時(shí) 4sn-1 = + 2an-1-3 ②
……………………………… 2分
①-② , 即,
∴ ,……………………………… 4分
(),
是以3為首項(xiàng),2為公差的等差數(shù)列,
. ……………………………… 6分
(2) ③
又 ④…………………… 8分
④-③
……………………………… 12分
21.解:(1)
……………………………… 2分
恒成立
即恒成立
顯然時(shí),上式不能恒成立
是二次函數(shù)
由于對一切于是由二次函數(shù)的性質(zhì)可得
……………………………… 4分
即
.……………………………… 6分
(2)
即
……………………………… 12分
當(dāng),
當(dāng).……………………………… 12分
22.解(1)設(shè),代入得,
化簡得. ……………………………… 4分
(2)直線與圓相切,證明(略) ……………………………… 8分
(3)將代入得,點(diǎn)的坐標(biāo)為.
設(shè)直線的方程為代入,得,
由
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com