解得.從而---------9分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列滿足,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項和前n項和

【解析】第一問中,利用,得到從而得證

第二問中,利用∴ ∴分組求和法得到結(jié)論。

解:(1)由題得 ………4分

                    ……………………5分

   ∴數(shù)列是以2為公比,2為首項的等比數(shù)列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>

已知正項數(shù)列的前n項和滿足:,

(1)求數(shù)列的通項和前n項和;

(2)求數(shù)列的前n項和;

(3)證明:不等式  對任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項數(shù)列,∴           ∴ 

又n=1時,

   ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對任意的都成立.

 

查看答案和解析>>

中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

(Ⅰ)求角的大;

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結(jié)論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

在數(shù)列中,,當(dāng)時, 

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設(shè),求數(shù)列的前項和.

【解析】本試題主要考查了數(shù)列的通項公式的求和 綜合運(yùn)用。第一問中 ,利用,得到,故故為以1為首項,公差為2的等差數(shù)列. 從而     

第二問中,

,從而可得

為以1為首項,公差為2的等差數(shù)列.

從而      ……………………6分

(2)……………………9分

 

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點(diǎn)個數(shù)只有一個方法2:把函數(shù)的零點(diǎn)個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點(diǎn)個數(shù)問題,在坐標(biāo)系中畫出圖形


由圖看出顯然一個交點(diǎn),因此函數(shù)的零點(diǎn)個數(shù)只有一個

袋中有50個大小相同的號牌,其中標(biāo)著0號的有5個,標(biāo)著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>


同步練習(xí)冊答案