題目列表(包括答案和解析)
A.(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線的參數(shù)方程為(為參數(shù)),直線的方程為,則曲線上的動(dòng)點(diǎn)到直線距離的最大值為 .
B.(不等式選講選做題)若存在實(shí)數(shù)滿足不等式,則實(shí)數(shù)的取值范圍為 .
C.(幾何證明選講選做題)如圖,切于點(diǎn),割線經(jīng)過(guò)圓心,弦于點(diǎn).已知的半徑為3,,則 . .
(本小題滿分14分)設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線上,為常數(shù),.
(1)求;
(2)若數(shù)列的公比,數(shù)列滿足,求證:為等差數(shù)列,并求;
(3)設(shè)數(shù)列滿足,為數(shù)列的前項(xiàng)和,且存在實(shí)數(shù)滿足,,求的最大值.
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),,則。
依題意得:,即 解得
第二問(wèn)當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,。∴在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增!在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無(wú)解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
(本大題共13分)
已知函數(shù)是定義在R的奇函數(shù),當(dāng)時(shí),.
(1)求的表達(dá)式;
(2)討論函數(shù)在區(qū)間上的單調(diào)性;
(3)設(shè)是函數(shù)在區(qū)間上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù),滿足并且使在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052015333353123388/SYS201205201535077031191919_ST.files/image010.png">,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。
(本小題滿分12分)
設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線上,(為常數(shù),,).
(1)求;
(2)若數(shù)列的公比,數(shù)列滿足,,,求證:為等差數(shù)列,并求;
(3)設(shè)數(shù)列滿足,為數(shù)列的前項(xiàng)和,且存在實(shí)數(shù)滿足,求的最大值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com