題目列表(包括答案和解析)
在四面體ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求證:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。
(本小題滿分12分)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E為PD的中點(diǎn).
(1) 求證:CE∥平面PAB;
(2) 求PA與平面ACE所成角的大;
(3) 求二面角E-AC-D的大小.
一個水平放置的平面圖形的斜二測直觀圖是直角梯形ABCD,如圖所示,
∠ABC=45°,AB=AD=1,DC⊥BC,這個平面圖形的面積為______
在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積是( ).
A.π B.π C.π D.π
((本小題滿分12分)
如圖,已知四棱錐P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,側(cè)面PBC⊥底面ABCD,O是BC的中點(diǎn),AO交BD于E.
(1)求證:PA⊥BD;
(2)求二面角P—DC—B的大。
一.選擇題:(本大共12小題,每小題5分,在每小題的四個選項(xiàng)中只有一個是正確的.)
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
C
D
A
B
C
B
C
A
D
二、填空題(本大題4個小題,每小題4分,共16分,只填結(jié)果,不要過程)
13、 3 14、 9
15、 240 16、
三.解答題(本大題共6個小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟。)
17、證明:(1)連結(jié),設(shè)
連結(jié), 是正方體 是平行四邊形
∥且 2分
又分別是的中點(diǎn),∥且
是平行四邊形 4分
∥面,面
∥面 6分
(2)面 7分
又,
9分
同理可證, 11分
又
面 12分
18.解:(1)=3125;------4分(2)A=120; ------8分(3)=1200-----12分.
平面平面 -----------------------------------------------------6分
(2)ABCD為菱形,,過O在平面OEB內(nèi)作OFBE于F,連OF, AFO為二面角的平面角, tanAFO = -------12分
20.(1) ---------4分
.(2) ---------8分
.(3) ---------12分
21.解:(1)過A作BC的反向延長線的垂線,交于點(diǎn)E,連ED,
∵面ACB⊥面BCD,∴AE⊥面BCD 又AB=BC=BD,
∠ABC=∠DBC=1200
∴AE=ED= ∴∠ADE= ----------4分
(2)過D作EC的平行線與過C平行于ED的直線交于F。
由(1)知,EDFC為矩形 ∵DF⊥DE, ∴DF⊥AD,即BC⊥AD ∴ 900-即為所求 ----8分
(3)過E作EG⊥BD于G,連結(jié)AG
由三垂線定理知,AG⊥BD。由 ,
在Rt△AEG中,tan∠AGE=2, ∠AGE=arctan2
∴二面角A―BD―C的度數(shù)為 π-arctan2 - -------12分
22. (1)∵B1D⊥面ABC ∴B1D⊥AC
又∵AC⊥BC 且B1D∩BC=D ∴平面 -------4分
(2)連結(jié)B
∴B
∵B1D⊥BC 且D為的中點(diǎn) ∴B
(3)過C1在平面內(nèi)作C1O∥B1D,交BC的延長線于O點(diǎn),
過O作OM⊥AB于M點(diǎn),連結(jié)C
∴∠OMC1是二面角的平面角---------11分
設(shè)=
∴BD=a , C1O= B1D=a , BO=
∵∠CBA= , ∴OM=a =B1D , ∴∠OMC1=
∴二面角的大小為 ---------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com