(I)若圖象的最低點(diǎn)坐標(biāo), 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=Asin(ωx+?)(A>0,ω>0,0<?<
π
2
)在一個(gè)周期內(nèi)的圖象如圖所示,P(x0,y0)是圖象的最髙點(diǎn),Q是圖象的最低點(diǎn),M(3,0)是線段PQ與x軸的交點(diǎn),且cos∠POM=
5
5
,|OP|=
5

(I)求出點(diǎn)P的坐標(biāo);
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)將函數(shù)y=f(x)的圖象向右平移2個(gè)單位后得到函數(shù)y=g(x)的圖象,試求函數(shù)h(x)=f(x)•g(x)的單調(diào)遞增區(qū)間.試求函數(shù)h(x)=f(x)•g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

(2009•浦東新區(qū)一模)對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說(shuō)明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對(duì)于任意正實(shí)數(shù)x1,x2且x1+x2=1,試問(wèn)是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2012•湖南)函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點(diǎn),A,C為圖象與x軸的兩個(gè)交點(diǎn),B為圖象的最低點(diǎn).
(1)若φ=
π
6
,點(diǎn)P的坐標(biāo)為(0,
3
3
2
),則ω=
3
3

(2)若在曲線段
ABC
與x軸所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)在△ABC內(nèi)的概率為
π
4
π
4

查看答案和解析>>

函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點(diǎn),A,C為圖象與x軸的兩個(gè)交點(diǎn),B為圖象的最低點(diǎn).
(1)若φ=,點(diǎn)P的坐標(biāo)為(0,),則ω=   
(2)若在曲線段與x軸所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)在△ABC內(nèi)的概率為   

查看答案和解析>>

函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點(diǎn),A,C為圖象與x軸的兩個(gè)交點(diǎn),B為圖象的最低點(diǎn).
(1)若φ=,點(diǎn)P的坐標(biāo)為(0,),則ω=    ;
(2)若在曲線段與x軸所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)在△ABC內(nèi)的概率為   

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

  • <li id="hbc5e"><dl id="hbc5e"></dl></li>

             又平面BDF,

             平面BDF。       2分

         (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

            

            

            

             即異面直線CM與FD所成角的大小為   3分

         (III)解:平面ADF,

             平面ADF的法向量為      1分

             設(shè)平面BDF的法向量為

             由

                  1分

            

                1分

             由圖可知二面角A―DF―B的大小為   1分

      19.解:(I)設(shè)該小組中有n個(gè)女生,根據(jù)題意,得

            

             解得n=6,n=4(舍去)

             該小組中有6個(gè)女生。        6分

         (Ⅱ)由題意,甲、乙、丙3人中通過(guò)測(cè)試的人數(shù)不少于2人,

             即通過(guò)測(cè)試的人數(shù)為3人或2人。

             記甲、乙、丙通過(guò)測(cè)試分別為事件A、B、C,則

            

                  6分

      20.解:(I)的等差中項(xiàng),

                   1分

            

                   2分

                      1分

         (Ⅱ)

                     2分

            

                3分

             ,   

             當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

            

      21.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                     3分

                  1分

         (II)由題意,設(shè)

             由     1分

                  3分

         (III)由雙曲線和ABCD的對(duì)稱性,可知A與C、B與D關(guān)于原點(diǎn)對(duì)稱。

             而   

             1分

             點(diǎn)O到直線的距離   1分

                    1分

                   1分

      22.解:(I)當(dāng)t=1時(shí),   1分

             當(dāng)變化時(shí),的變化情況如下表:

            

      (-1,1)

      1

      (1,2)

      0

      +

      極小值

             由上表,可知當(dāng)    2分

                  1分

         (Ⅱ)

            

             顯然的根。    1分

             為使處取得極值,必須成立。

             即有    2分

            

             的個(gè)數(shù)是2。

         (III)當(dāng)時(shí),若恒成立,

             即   1分

            

             ①當(dāng)時(shí),

             ,

             上單調(diào)遞增。

            

            

             解得    1分

             ②當(dāng)時(shí),令

             得(負(fù)值舍去)。

         (i)若時(shí),

             上單調(diào)遞減。

            

            

                 1分

         (ii)若

             時(shí),

             當(dāng)

             上單調(diào)遞增,

            

             要使,則

            

                  2分

         (注:可證上恒為負(fù)數(shù)。)

             綜上所述,t的取值范圍是。        1分

       


      同步練習(xí)冊(cè)答案