已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

      

      

       。

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設(shè)平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        6分

   (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

       即通過測試的人數(shù)為3人或2人。

       記甲、乙、丙通過測試分別為事件A、B、C,則

      

            6分

20.解:(I)的等差中項,

             1分

      

             2分

                1分

   (Ⅱ)

               2分

      

          3分

       ,   

       當且僅當時等號成立。

      

21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

               3分

            1分

   (II)由題意,設(shè)

       由     1分

            3分

   (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

       而   

       1分

       點O到直線的距離   1分

              1分

             1分

22.解:(I)當t=1時,   1分

       當變化時,的變化情況如下表:

      

(-1,1)

1

(1,2)

0

+

極小值

       由上表,可知當    2分

            1分

   (Ⅱ)

      

       顯然的根。    1分

       為使處取得極值,必須成立。

       即有    2分

      

       的個數(shù)是2。

   (III)當時,若恒成立,

       即   1分

      

       ①當時,

       ,

       上單調(diào)遞增。

      

      

       解得    1分

       ②當時,令

       得(負值舍去)。

   (i)若時,

       上單調(diào)遞減。

      

      

           1分

   (ii)若

       時,

       當

       上單調(diào)遞增,

      

       要使,則

      

            2分

   (注:可證上恒為負數(shù)。)

       綜上所述,t的取值范圍是。        1分

 


同步練習冊答案
<menu id="j7wr5"><output id="j7wr5"></output></menu>
<tfoot id="j7wr5"></tfoot>
        <menu id="j7wr5"><dfn id="j7wr5"><i id="j7wr5"></i></dfn></menu>
        <tbody id="j7wr5"><li id="j7wr5"></li></tbody>