18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

      1.        又平面BDF,

               平面BDF。       2分

           (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

              

              

              

               即異面直線CM與FD所成角的大小為   3分

           (III)解:平面ADF,

               平面ADF的法向量為      1分

               設(shè)平面BDF的法向量為

               由

                    1分

              

                  1分

               由圖可知二面角A―DF―B的大小為   1分

        19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

              

               解得n=6,n=4(舍去)

               該小組中有6個女生。        6分

           (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

               即通過測試的人數(shù)為3人或2人。

               記甲、乙、丙通過測試分別為事件A、B、C,則

              

                    6分

        20.解:(I)的等差中項,

                     1分

              

                     2分

                        1分

           (Ⅱ)

                       2分

              

                  3分

               ,   

               當且僅當時等號成立。

              

        21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                       3分

                    1分

           (II)由題意,設(shè)

               由     1分

                    3分

           (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

               而   

               1分

               點O到直線的距離   1分

                      1分

                     1分

        22.解:(I)當t=1時,   1分

               當變化時,的變化情況如下表:

              

        (-1,1)

        1

        (1,2)

        0

        +

        極小值

               由上表,可知當    2分

                    1分

           (Ⅱ)

              

               顯然的根。    1分

               為使處取得極值,必須成立。

               即有    2分

              

               的個數(shù)是2。

           (III)當時,若恒成立,

               即   1分

              

               ①當時,

              

               上單調(diào)遞增。

              

              

               解得    1分

               ②當時,令

               得(負值舍去)。

           (i)若時,

               上單調(diào)遞減。

              

              

                   1分

           (ii)若

               時,

               當

               上單調(diào)遞增,

              

               要使,則

              

                    2分

           (注:可證上恒為負數(shù)。)

               綜上所述,t的取值范圍是。        1分

         


        同步練習(xí)冊答案