C.函數(shù)軸的交點的橫坐標(biāo)由小到大依次構(gòu)成一個無窮等差數(shù)列 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
數(shù)學(xué)公式
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

已知函數(shù)f(x)=2cos2x+2sinx cosx-1的圖象與g(x)=-1的圖象在y軸的右側(cè)交點按從橫坐標(biāo)由小到大的順序記為D1,D2,D3,…,則

[  ]

A.π

B.

C.

D.

查看答案和解析>>

已知函數(shù)f(x)=2cos2x+2sinxcosx-1的圖象與g(x)=-1的圖象在y軸的右側(cè)交點按從橫坐標(biāo)由小到大的順序記為D1,D2,D3,…,則|D5D7|=( 。

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

           又平面BDF,

           平面BDF。       2分

       (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

          

          

           。

           即異面直線CM與FD所成角的大小為   3分

       (III)解:平面ADF,

           平面ADF的法向量為      1分

           設(shè)平面BDF的法向量為

           由

                1分

          

              1分

           由圖可知二面角A―DF―B的大小為   1分

    19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

          

           解得n=6,n=4(舍去)

           該小組中有6個女生。        6分

       (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

           即通過測試的人數(shù)為3人或2人。

           記甲、乙、丙通過測試分別為事件A、B、C,則

          

                6分

    20.解:(I)的等差中項,

                 1分

           。

                 2分

                    1分

       (Ⅱ)

                   2分

          

              3分

           ,   

           當(dāng)且僅當(dāng)時等號成立。

          

    21.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                   3分

                1分

       (II)由題意,設(shè)

           由     1分

                3分

       (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

           而   

           1分

           點O到直線的距離   1分

                  1分

                 1分

    22.解:(I)當(dāng)t=1時,   1分

           當(dāng)變化時,的變化情況如下表:

          

    (-1,1)

    1

    (1,2)

    0

    +

    極小值

           由上表,可知當(dāng)    2分

                1分

       (Ⅱ)

          

           顯然的根。    1分

           為使處取得極值,必須成立。

           即有    2分

          

           的個數(shù)是2。

       (III)當(dāng)時,若恒成立,

           即   1分

          

           ①當(dāng)時,

           ,

           上單調(diào)遞增。

          

          

           解得    1分

           ②當(dāng)時,令

           得(負(fù)值舍去)。

       (i)若時,

           上單調(diào)遞減。

          

          

               1分

       (ii)若

           時,

           當(dāng)

           上單調(diào)遞增,

          

           要使,則

          

                2分

       (注:可證上恒為負(fù)數(shù)。)

           綜上所述,t的取值范圍是。        1分

     


    同步練習(xí)冊答案
  • <button id="2si63"><wbr id="2si63"><sub id="2si63"></sub></wbr></button><dfn id="2si63"><pre id="2si63"></pre></dfn><table id="2si63"><tbody id="2si63"></tbody></table>
    • <code id="2si63"><input id="2si63"></input></code>
      <samp id="2si63"></samp>