(2)因?yàn)樵谥?.所以由勾股定理.得 查看更多

 

題目列表(包括答案和解析)

如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)將45°角的頂點(diǎn)P在線段OB上滑動(不與點(diǎn)B重合),該角的一邊過點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;

(3)在同一平面直角坐標(biāo)系中,兩條直線x = m,x = m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

【解析】通過B(3,0),C(0,)兩點(diǎn),求出拋物線的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據(jù)勾股定理得jPD2-(1-x)2=4,又因?yàn)椤?i>MPQ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數(shù)關(guān)系式

(3)假設(shè)E、F、H、G圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標(biāo),求出EF、GH的長度,

通過四邊形EFHG的面積求出m的值

 

查看答案和解析>>

如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB = 2OC= 3.

   (1)求a,b的值;

   (2)將45°角的頂點(diǎn)P在線段OB上滑動(不與點(diǎn)B重合),該角的一邊過點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;

(3)在同一平面直角坐標(biāo)系中,兩條直線x = m,x = m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

【解析】通過B(3,0),C(0,)兩點(diǎn),求出拋物線的解析式,

(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據(jù)勾股定理得jPD2-(1-x)2=4,又因?yàn)椤?i>MPQ ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數(shù)關(guān)系式

(3)假設(shè)E、F、HG圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標(biāo),求出EF、GH的長度,

通過四邊形EFHG的面積求出m的值

 

查看答案和解析>>


同步練習(xí)冊答案