如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,它們的斜邊長為2,若△ABC固定不動,△AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),設(shè)BE=m,CD=n.
(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對進行證明;
(2)求m與n的函數(shù)關(guān)系式,直接寫出自變量n的取值范圍;
(3)以△ABC的斜邊BC所在的直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標(biāo)系(如圖2).在邊BC上找一點D,使BD=CE,求出D點的坐標(biāo),并通過計算驗證BD
2+CE
2=DE
2;
(4)在旋轉(zhuǎn)過程中,(3)中的等量關(guān)系BD
2+CE
2=DE
2是否始終成立?若成立,請證明;若不成立,請說明理由.