題目列表(包括答案和解析)
解關(guān)于x的不等式>1(a>0).
解參數(shù)不等式時對于參數(shù)的討論,特別注意不能隨便去分母.
解不等式(x2+x+1)(x+1)3(x-2)2(3-x)>0.
解高次不等式時將不等式一邊分解為若干個一次因式的積,且x的系數(shù)為正.
設(shè)A={x||x-1|<2},B={x|>0},則A∩B等于
A.{x|-1<x<3} B.{x|x<0或x>2}
C.{x|-1<x<0} D.{x|-1<x<0或2<x<3}
本題考查含絕對值不等式、分式不等式的解法及集合的運算.在進(jìn)行集合運算時,把解集標(biāo)在數(shù)軸上,借助圖形可直觀求解.
已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項和.
(1)求數(shù)列的通項公式和數(shù)列的前n項和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
第三問,
若成等比數(shù)列,則,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又時,滿足,
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.
,等號在n=2時取得.
此時 需滿足.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨n的增大而增大, n=1時取得最小值-6.
此時 需滿足.
綜合①、②可得的取值范圍是.
(3),
若成等比數(shù)列,則,
即.
由,可得,即,
.
又,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2, n=12時,數(shù)列中的成等比數(shù)列
解關(guān)于的不等式
【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,
首先對于二次項系數(shù)a的情況分為三種情況來討論,
A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關(guān)系,得到不等式的解集。
解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1
此時原不等式解集為;
②若a>0,則。時,原不等式的解集為;
ⅱ)時,原不等式的解集為;
ⅲ)時,原不等式的解集為。
③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">
原不等式的解集為。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com