4.?dāng)?shù)形結(jié)合的思想方法應(yīng)用廣泛.常見的如在解方程和解不等式問題中.在求函數(shù)的值域.最值問題中.在求復(fù)數(shù)和三角函數(shù)問題中.運(yùn)用數(shù)形結(jié)合思想.不僅直觀易發(fā)現(xiàn)解題途徑.而且能避免復(fù)雜的計(jì)算與推理.大大簡化了解題過程.這在解選擇題.填空題中更顯其優(yōu)越.要注意培養(yǎng)這種思想意識.要爭取胸中有圖.見數(shù)想圖.以開拓自己的思維視野. 查看更多

 

題目列表(包括答案和解析)

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

(2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
1
x+a
>0恒成立,求實(shí)數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)f(x)=
1
x+a
和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)f(x)=x+a+
1
x+a
的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是( 。

查看答案和解析>>

現(xiàn)有問題:“對任意x>0,不等式x-a+>0恒成立,求實(shí)數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是( )
A.甲同學(xué)方法正確,結(jié)論錯誤
B.乙同學(xué)方法正確,結(jié)論錯誤
C.甲同學(xué)方法正確,結(jié)論正確
D.乙同學(xué)方法錯誤,結(jié)論正確

查看答案和解析>>

現(xiàn)有問題:“對任意x>0,不等式x-a+數(shù)學(xué)公式>0恒成立,求實(shí)數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)數(shù)學(xué)公式和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)數(shù)學(xué)公式的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是


  1. A.
    甲同學(xué)方法正確,結(jié)論錯誤
  2. B.
    乙同學(xué)方法正確,結(jié)論錯誤
  3. C.
    甲同學(xué)方法正確,結(jié)論正確
  4. D.
    乙同學(xué)方法錯誤,結(jié)論正確

查看答案和解析>>

(本小題滿分13分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>


同步練習(xí)冊答案