(I)求該班學(xué)生參加活動的人均次數(shù), 查看更多

 

題目列表(包括答案和解析)

按照新課程的要求, 高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動). 該校高2010級一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如圖所示.

(I)求該班學(xué)生參加活動的人均次數(shù);(II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率

(III)從該班中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

 

 

查看答案和解析>>

按照新課程的要求, 高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動). 該校高2010級一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如圖所示.
(I)求該班學(xué)生參加活動的人均次數(shù);(II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率
(III)從該班中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

按照新課程的要求, 高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動). 該校高2010級一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如圖所示.
(I)求該班學(xué)生參加活動的人均次數(shù);(II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率
(III)從該班中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

按照新課程的要求,高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動).某校高一•一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如條形圖所示.
( I)求該班學(xué)生參加活動的人均次數(shù)
.
x
;
( II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率;
( III)從該班中任選兩名學(xué)生,用ξ表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.(要求:答案用最簡分?jǐn)?shù)表示)

查看答案和解析>>

按照新課程的要求,高中學(xué)生在每學(xué)期都要至少參加一次社會實(shí)踐活動(以下簡稱活動).某校高一•一班50名學(xué)生在上學(xué)期參加活動的次數(shù)統(tǒng)計(jì)如條形圖所示.
( I)求該班學(xué)生參加活動的人均次數(shù);
( II)從該班中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率;
( III)從該班中任選兩名學(xué)生,用ξ表示這兩人參加活動次數(shù)之差的絕對值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.(要求:答案用最簡分?jǐn)?shù)表示)

查看答案和解析>>

一.選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

B

A

C

D

D

D

A

B

A

A

二.填空題

   13.4;        14. ;       15.15;     16.,可以填寫任一實(shí)數(shù).

三.解答題

17. (Ⅰ)列表:

2

6

10

14

0

1

3

1

1

描點(diǎn)作圖,得圖象如下.

6分

(Ⅱ)

所以,當(dāng),即時(shí),函數(shù)取得最小值.     12分

18.由圖可知,參加活動1次、2次和3次的學(xué)生人數(shù)分別為5、25和20.

(I)該班學(xué)生參加活動的人均次數(shù)為=.    6分

(II)從該班中任選兩名學(xué)生,他們參加活動次數(shù)恰好相等的概率為.                                              12分

19.(Ⅰ)∵AD=2AB=2,E是AD的中點(diǎn),

∴△BAE,△CDDE是等腰直角三角形,

易知,∠BEC=90°,即BE⊥EC    

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′.                  6分

(Ⅱ)法一:設(shè)M是線段EC的中點(diǎn),過M作MF⊥BC

垂足為F,連接D′M,D′F,則D′M⊥EC

∵平面D′EC⊥平面BEC,

∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,

由三垂線定理得:D′F⊥BC

∴∠D′FM是二面D′―BC―E的平面角.

在Rt△D′MF中,

即二面角D′―BC―E的正切值為.                              12分

法二:如圖,以EB,EC為x軸,y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系,

設(shè)平面BEC的法向量為;平面D′BC的法向量為

∴二面角D′―BC―E的正切值為.                                 12分

20.(I)

   (II)由(I)知

   

21(Ⅰ)設(shè)橢圓C的方程為,則由題意知b = 1.

∴橢圓C的方程為  …………………………………………………6分

(Ⅱ)易知直線的斜率為,從而直線的斜率為1.設(shè)直線的方程為,代如橢圓的方程,并整理可得.設(shè),則.于是

解之得.

當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意.當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

所以,當(dāng)且僅當(dāng)直線的方程為時(shí), 點(diǎn)的垂心.        12分

22.(Ⅰ)對一切

于是,                            

         ()   5分

(Ⅱ)由

兩式相減,得:

  

        

       ∴.                                10分

(Ⅲ) 由于,        

所以,   14分

 

 


同步練習(xí)冊答案