(1)求點B的坐標(biāo),(2)求拋物線的解析式,(3)在拋物線上是否還存在點P.使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在.求所有點P的坐標(biāo),若不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.
①在第一象限內(nèi),這條拋物線上有一點P,AP交y軸于點D,當(dāng)OD=1.5時,試比較S△APC與S△AOC的大。
②在x軸的上方,這條拋物線上是否存在點Pn,使得S△APnC=S△AOC?若存在,請求出點Pn的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.
①在第一象限內(nèi),這條拋物線上有一點P,AP交y軸于點D,當(dāng)OD=1.5時,試比較S△APC與S△AOC的大小.
②在x軸的上方,這條拋物線上是否存在點Pn,使得S△APnC=S△AOC?若存在,請求出點Pn的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

 (1)求拋物線的解析式,并求出頂點A的坐標(biāo).

(2) 連結(jié)AB,平移AB所在的直線,使其經(jīng)過原點O,得到直線.點上一動點,當(dāng)△的周長最小時,求點P的坐標(biāo).

(3)當(dāng)△的周長最小時,在直線AB的上方是否存在一點Q,使以A,B,Q為頂點的三角形與△POB相似,若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.(規(guī)定:點Q的對應(yīng)頂點不為點O

 

查看答案和解析>>

當(dāng)拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標(biāo)為(m,2m-1),設(shè)頂點為P(x0,y0),則:數(shù)學(xué)公式
當(dāng)m的值變化時,頂點橫、縱坐標(biāo)x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標(biāo)都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運(yùn)用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標(biāo)y與橫坐標(biāo)x之間的函數(shù)關(guān)系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

已知拋物線的解析式為y=-x2+2mx+4-m2
(1)求證:不論m取何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設(shè)點P為此拋物線上一點,若△PAB的面積為8,求符合條件的所有點P的坐標(biāo)(可用含m的代數(shù)式表示)
(3)若(2)中△PAB的面積為s(s>0),試根據(jù)面積s值的變化情況,確定符合條件的點P的個數(shù).

查看答案和解析>>


同步練習(xí)冊答案