14.如下圖.共有12個(gè)大小相同的小正方形.其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開(kāi)圖的一部分.現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影.能構(gòu)成這個(gè)正方體的表面展開(kāi)圖的概率是 . 查看更多

 

題目列表(包括答案和解析)

如下圖,共有12個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開(kāi)圖的一部分。現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開(kāi)圖的概率是___________。

查看答案和解析>>

探究題:
(1)數(shù)軸上到點(diǎn)2和點(diǎn)6距離相等的點(diǎn)表示的數(shù)是4,有這樣的關(guān)系4=
1
2
(2+6)
,那么到點(diǎn)100和到點(diǎn)1000距離相等的點(diǎn)表示的數(shù)是
550
550
;到點(diǎn)m和點(diǎn)-n距離相等的點(diǎn)表示的數(shù)是:
m-n
2
m-n
2
;
(2)當(dāng)x=
2
2
時(shí),代數(shù)式-(x-2)2+10有最大值,最大值為:
10
10

(3)如圖,將一塊正方形紙片,第一次剪成四個(gè)大小形狀一樣的正方形,第二次再將其中的一個(gè)正方形,按同樣的方法,剪成四個(gè)小正方形,如此循環(huán)進(jìn)行下去.剪n次后圖中共有
3n+1
3n+1
個(gè)正方形.

查看答案和解析>>

鐘面數(shù)字問(wèn)題
如圖,鐘面上有1,2,3,…,11,12這12個(gè)數(shù)字.
(1)試在某些數(shù)的前面添加負(fù)號(hào),使它們的代數(shù)和為零
(2)能否改變鐘面上的數(shù),比如只剩下6個(gè)偶數(shù),仍按第(1)小題的要求來(lái)做?
[思路探究]
(1)我們先試著選定任意幾個(gè)數(shù)字,在其前面添加負(fù)號(hào),如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
這當(dāng)然不是我們要的答案,但我們可以將其調(diào)整,比如改變1前面的符號(hào),得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用這種方法當(dāng)然可以得到許多答案,但我們并不滿足.我們希望尋找其中的規(guī)律,使我們能找到更多的解答.我們發(fā)現(xiàn):
在調(diào)整符號(hào)的過(guò)程中,若將一個(gè)正數(shù)變號(hào),12個(gè)數(shù)的代數(shù)和就減少這個(gè)正數(shù)的兩倍;若將一個(gè)負(fù)數(shù)變號(hào),12個(gè)數(shù)的代數(shù)和就增加這個(gè)負(fù)數(shù)的絕對(duì)值的兩倍.
要使12個(gè)數(shù)的代數(shù)和為零,其中正數(shù)的和的絕對(duì)值必須與負(fù)數(shù)的和的絕對(duì)值相等,均為12個(gè)數(shù)之和的-半,即等于39.
由此,我們只要找到幾個(gè)和為39的數(shù),將這些數(shù)添上負(fù)號(hào)即可.
由于最大3個(gè)數(shù)之和為33<39,因此必須再添上一個(gè)6才有解答,所以添加負(fù)號(hào)的數(shù)至少要有4個(gè).同理可知,添加負(fù)號(hào)的數(shù)最多不超過(guò)8個(gè).
根據(jù)以上規(guī)律,就能在很短的時(shí)間內(nèi)得到許多解答,但是要寫(xiě)出所有解答,還必須把答案作適當(dāng)?shù)姆诸悾绢}共有124個(gè)解答,親愛(ài)的讀者,你能寫(xiě)出這124個(gè)解答來(lái)嗎?
(2)因?yàn)?+4+6+8+10+12-42,它的一半為21,而奇數(shù)不可能通過(guò)偶數(shù)求和得到,所以只剩下6個(gè)偶數(shù)時(shí),不能按第(1)小題的要求來(lái)做.

查看答案和解析>>

作業(yè)寶鐘面數(shù)字問(wèn)題
如圖,鐘面上有1,2,3,…,11,12這12個(gè)數(shù)字.
(1)試在某些數(shù)的前面添加負(fù)號(hào),使它們的代數(shù)和為零
(2)能否改變鐘面上的數(shù),比如只剩下6個(gè)偶數(shù),仍按第(1)小題的要求來(lái)做?
[思路探究]
(1)我們先試著選定任意幾個(gè)數(shù)字,在其前面添加負(fù)號(hào),如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
這當(dāng)然不是我們要的答案,但我們可以將其調(diào)整,比如改變1前面的符號(hào),得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用這種方法當(dāng)然可以得到許多答案,但我們并不滿足.我們希望尋找其中的規(guī)律,使我們能找到更多的解答.我們發(fā)現(xiàn):
在調(diào)整符號(hào)的過(guò)程中,若將一個(gè)正數(shù)變號(hào),12個(gè)數(shù)的代數(shù)和就減少這個(gè)正數(shù)的兩倍;若將一個(gè)負(fù)數(shù)變號(hào),12個(gè)數(shù)的代數(shù)和就增加這個(gè)負(fù)數(shù)的絕對(duì)值的兩倍.
要使12個(gè)數(shù)的代數(shù)和為零,其中正數(shù)的和的絕對(duì)值必須與負(fù)數(shù)的和的絕對(duì)值相等,均為12個(gè)數(shù)之和的-半,即等于39.
由此,我們只要找到幾個(gè)和為39的數(shù),將這些數(shù)添上負(fù)號(hào)即可.
由于最大3個(gè)數(shù)之和為33<39,因此必須再添上一個(gè)6才有解答,所以添加負(fù)號(hào)的數(shù)至少要有4個(gè).同理可知,添加負(fù)號(hào)的數(shù)最多不超過(guò)8個(gè).
根據(jù)以上規(guī)律,就能在很短的時(shí)間內(nèi)得到許多解答,但是要寫(xiě)出所有解答,還必須把答案作適當(dāng)?shù)姆诸悾绢}共有124個(gè)解答,親愛(ài)的讀者,你能寫(xiě)出這124個(gè)解答來(lái)嗎?
(2)因?yàn)?+4+6+8+10+12-42,它的一半為21,而奇數(shù)不可能通過(guò)偶數(shù)求和得到,所以只剩下6個(gè)偶數(shù)時(shí),不能按第(1)小題的要求來(lái)做.

查看答案和解析>>


同步練習(xí)冊(cè)答案