19. 查看更多

 

題目列表(包括答案和解析)

(本小題共14分)

如圖,在三棱錐中,,,,。

(Ⅰ)求證:;

(Ⅱ)求二面角的大小。

查看答案和解析>>

(本小題共14分)

已知橢圓的離心率為

   (I)若原點到直線的距離為求橢圓的方程;

   (II)設過橢圓的右焦點且傾斜角為的直線和橢圓交于A,B兩點.

        (i)當,求b的值;

        (ii)對于橢圓上任一點M,若,求實數(shù)滿足的關系式.

查看答案和解析>>

(本小題共14分)

    已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且

   (I)求橢圓的方程;

   (II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

(本小題共14分)如圖,在三棱錐中,底面

,點分別在棱上,且(Ⅰ)求證:平面;(Ⅱ)當的中點時,求與平面所成的角的大小;(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

(本小題共14分)

設函數(shù)

(Ⅰ)若曲線在點處與直線相切,求的值;

(Ⅱ)求函數(shù)的單調區(qū)間與極值點。

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因為函數(shù)的最小正周期為,且

所以,解得

(Ⅱ)由(Ⅰ)得

因為

所以,

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點,連結

,

,

平面

平面

(Ⅱ),,

,

,即,且,

平面

中點.連結

在平面內的射影,

是二面角的平面角.

中,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面,

平面平面

,垂足為

平面平面,

平面

的長即為點到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,

到平面的距離為

解法二:

(Ⅰ),

,

平面

平面,

(Ⅱ)如圖,以為原點建立空間直角坐標系

,

,

中點,連結

,,

是二面角的平面角.

,,,

二面角的大小為

(Ⅲ)

在平面內的射影為正的中心,且的長為點到平面的距離.

如(Ⅱ)建立空間直角坐標系

,

的坐標為

到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時參加崗位服務為事件,那么,

即甲、乙兩人同時參加崗位服務的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務為事件,那么,

所以,甲、乙兩人不在同一崗位服務的概率是

(Ⅲ)隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務,

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

,即時,的變化情況如下表:

0

,即時,的變化情況如下表:

0

所以,當時,函數(shù)上單調遞減,在上單調遞增,

上單調遞減.

時,函數(shù)上單調遞減,在上單調遞增,在上單調遞減.

,即時,,所以函數(shù)上單調遞減,在上單調遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因為四邊形為菱形,所以

于是可設直線的方程為

因為在橢圓上,

所以,解得

兩點坐標分別為,

,,

所以

所以的中點坐標為

由四邊形為菱形可知,點在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因為四邊形為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當時,菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

,

;

,

(Ⅱ)證明:設每項均是正整數(shù)的有窮數(shù)列

,,,

從而

,

所以

同步練習冊答案