18.已知函數(shù).求導(dǎo)函數(shù).并確定的單調(diào)區(qū)間.[標(biāo)準(zhǔn)答案]: [高考考點(diǎn)]: 導(dǎo)數(shù).導(dǎo)數(shù)的應(yīng)用[易錯提醒]: 公式記憶出錯.分類討論出錯[備考提示]: 大學(xué)下放內(nèi)容.涉及面相對較小.題型種類也較少.易于掌握. 查看更多

 

題目列表(包括答案和解析)

(本小題共13分)已知函數(shù),求導(dǎo)函數(shù),并確定的單調(diào)區(qū)間.

查看答案和解析>>

(本小題共13分)

已知函數(shù),為函數(shù)的導(dǎo)函數(shù).

(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;

(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

(本小題共13分)

已知函數(shù),為函數(shù)的導(dǎo)函數(shù).

(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;

(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

(本小題共13分)
已知函數(shù)為函數(shù)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

(本小題共13分)
已知函數(shù)為函數(shù)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因?yàn)楹瘮?shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因?yàn)?sub>,

所以,

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點(diǎn),連結(jié)

,

,

平面

平面,

(Ⅱ),

,即,且,

平面

中點(diǎn).連結(jié)

在平面內(nèi)的射影,

是二面角的平面角.

中,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足為

平面平面,

平面

的長即為點(diǎn)到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,

點(diǎn)到平面的距離為

解法二:

(Ⅰ),,

,

,

平面

平面

(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

設(shè)

,

,

中點(diǎn),連結(jié)

,

,

是二面角的平面角.

,,,

二面角的大小為

(Ⅲ)

在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.

如(Ⅱ)建立空間直角坐標(biāo)系

,

點(diǎn)的坐標(biāo)為

點(diǎn)到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時參加崗位服務(wù)為事件,那么,

即甲、乙兩人同時參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務(wù)為事件,那么,

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

當(dāng),即時,的變化情況如下表:

0

當(dāng),即時,的變化情況如下表:

0

所以,當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

當(dāng),即時,,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因?yàn)樗倪呅?sub>為菱形,所以

于是可設(shè)直線的方程為

因?yàn)?sub>在橢圓上,

所以,解得

設(shè)兩點(diǎn)坐標(biāo)分別為,

,,

所以

所以的中點(diǎn)坐標(biāo)為

由四邊形為菱形可知,點(diǎn)在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當(dāng)時,菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

;

,

(Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列,

,,,,

從而

所以

同步練習(xí)冊答案