A. B. C. D.[標準答案]: C 查看更多

 

題目列表(包括答案和解析)

10、在集合{a,b,c,d}上定義兩種運算⊕和?如圖那么d?(a⊕c)=( 。

查看答案和解析>>

函數(shù)y=
ex+e-x
ex-e-x
的圖象大致為( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

平面直角坐標系中,O為坐標原點,設(shè)向量
OA
=
a
,
OB
=
b
,其中
a
=(3,1),
b
=(1,3)
,若
OC
a
b
,且0≤μ≤λ≤1,那么C點所有可能的位置區(qū)域用陰影表示正確的是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

12、今年“3•15”,某報社做了一次關(guān)于“什么是新時代的雷鋒精神?”的調(diào)查,在A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,共回收1000份,因報道需要,再從回收的問卷中按單位分層抽取容量為150的樣本,若在B單位抽30份,則在D單位抽取的問卷是
60
份.

查看答案和解析>>

4、集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是(  )

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因為函數(shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因為

所以,

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點,連結(jié)

,

,

平面

平面,

(Ⅱ),

,

,即,且,

平面

中點.連結(jié)

在平面內(nèi)的射影,

是二面角的平面角.

中,,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足為

平面平面

平面

的長即為點到平面的距離.

由(Ⅰ)知,又,且,

平面

平面

中,,

到平面的距離為

解法二:

(Ⅰ),

,

平面

平面,

(Ⅱ)如圖,以為原點建立空間直角坐標系

設(shè)

,

中點,連結(jié)

,

,

是二面角的平面角.

,,,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長為點到平面的距離.

如(Ⅱ)建立空間直角坐標系

的坐標為

到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時參加崗位服務(wù)為事件,那么

即甲、乙兩人同時參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務(wù)為事件,那么

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務(wù),

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

,即時,的變化情況如下表:

0

,即時,的變化情況如下表:

0

所以,當時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

,即時,,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因為四邊形為菱形,所以

于是可設(shè)直線的方程為

因為在橢圓上,

所以,解得

設(shè)兩點坐標分別為,

,,

所以

所以的中點坐標為

由四邊形為菱形可知,點在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因為四邊形為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當時,菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

,

,

(Ⅱ)證明:設(shè)每項均是正整數(shù)的有窮數(shù)列,

,,,,,

從而

所以

同步練習冊答案