(1)求a的值及直線AC的函數(shù)關系式,(2)P是線段AC上一動點.過點P作y軸的平行線.交拋物線于點M.交x軸于點N.①求線段PM長度的最大值,②在拋物線上是否存在這樣的點M.使得△CMP與△APN相似?如果存在.請直接寫出所有滿足條件的點M的坐標,如果不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

已知直線y=-x+4分別交x軸、y軸于點A、C,過A、C兩點的拋物線y=ax2-2ax+c交x軸于另一點B.
(1)求該拋物線的解析式;
(2)若動點Q從點B出發(fā),以每秒2個單位長度沿線段BA方向運動,同時動直線l從x軸出發(fā),以每秒1個單位長度沿y軸方向平行移動,直線l交AC與D,交BC于E,當點Q運動到點A時,兩者都停止運動.設運動時間為t秒,△QED的面積為S.
①求S與t的函數(shù)關系式:并探究:當t為何值時,S有最大值為多少?
②在點Q及直線l的運動過程中,是否存在△QED為直角三角形?若存在,請求t的值;若不存在,請說明理由.

查看答案和解析>>

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.
①當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
③當運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關系式.

查看答案和解析>>

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸相交于點C.連接AC,BC,A(-3,0),C(0,
3
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.
(1)求拋物線的解析式;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.
①當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
②拋物線的對稱軸上是否存在點Q,使得以B、N、Q為頂點的三角形與△A0C相似?如果存在,請直接寫出點Q的坐標;如果不存在,請說明理由.
③當運動時間為t秒時,連接MN,將△BMN沿MN翻折,得到△PMN.并記△PMN與△AOC的重疊部分的面積為S.求S與t的函數(shù)關系式.

查看答案和解析>>

如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點A、C,與y軸相交于點B,A(-
94
,0
),且△AOB∽△BOC.
(1)求C點坐標、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關系式;
(2)在線段AC上是否存在點M(m,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不精英家教網(wǎng)同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

如圖,已知二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點A、C,與y軸相交于點B,A(),且△AOB∽△BOC.
(1)求C點坐標、∠ABC的度數(shù)及二次函數(shù)y=ax2+bx+3的關系式;
(2)在線段AC上是否存在點M(m,0).使得以線段BM為直徑的圓與邊BC交于P點(與點B不同),且以點P、C、O為頂點的三角形是等腰三角形?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案