研究課題:螞蟻怎樣爬最近?
研究方法:如圖1,正方體的棱長(zhǎng)為5cm,一只螞蟻欲從正方體底面上的點(diǎn)A沿著正方體表面爬到點(diǎn)C
1處,要求該螞蟻需要爬行的最短路程的長(zhǎng),可將該正方體右側(cè)面展開(kāi),由勾股定理得最短路程的長(zhǎng)為AC
1=
==5cm.這里,我們將空間兩點(diǎn)間最短路程問(wèn)題轉(zhuǎn)化為平面內(nèi)兩點(diǎn)間距離最短問(wèn)題.
研究實(shí)踐:(1)如圖2,正四棱柱的底面邊長(zhǎng)為5cm,側(cè)棱長(zhǎng)為6cm,一只螞蟻從正四棱柱底面上的點(diǎn)A沿著棱柱表面爬到C
1處,螞蟻需要爬行的最短路程的長(zhǎng)為
.
(2)如圖3,圓錐的母線長(zhǎng)為4cm,圓錐的側(cè)面展開(kāi)圖如圖4所示,且∠AOA
1=120°,一只螞蟻欲從圓錐的底面上的點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到點(diǎn)A.求該螞蟻需要爬行的最短路程的長(zhǎng).
(3)如圖5,沒(méi)有上蓋的圓柱盒高為10cm,底面圓的周長(zhǎng)為32cm,點(diǎn)A距離下底面3cm.一只位于圓柱盒外表面點(diǎn)A處的螞蟻想爬到盒內(nèi)表面對(duì)側(cè)中點(diǎn)B處.請(qǐng)求出螞蟻需要爬行的最短路程的長(zhǎng).