題目列表(包括答案和解析)
為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補全頻數(shù)條形圖;
(Ⅲ)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識
競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得
分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直
方圖,解答下列問題:
⑴填充頻率分布表的空格(將答案直接填在表格內(nèi));
⑵補全頻率分布直方圖;
⑶若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 | 50 |
為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
50.5~60.5 | 4 | 0.08 | 0.008 |
60.5~70.5 | 0.16 | 0.016 | |
70.5~80.5 | 10 | ||
80.5~90.5 | 16 | 0.32 | 0.032 |
90.5~100.5 | |||
合計 | 50 |
(1)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(2)補全頻率分布直方圖;
(3)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
(14分)為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計 | 50 |
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補全頻數(shù)條形圖;
(Ⅲ)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
50.5~60.5 | 4 | 0.08 | 0.008 |
60.5~70.5 | 0.16 | 0.016 | |
70.5~80.5 | 10 | ||
80.5~90.5 | 16 | 0.32 | 0.032 |
90.5~100.5 | |||
合計 | 50 |
(1)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(2)補全頻率分布直方圖;
(3)若成績在75.5~85.5分的學生為二等獎,問獲得二等獎的學生約為多少人?
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
A
D
A
B
D
B
C
B
C
D
B
1.提示:,故選C。
2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A
3.提示:又,所以,故選D。
4.提示:在AB上取點D,使得,則點P只能在AD內(nèi)運動,則,
5.提示:排除法選B。
6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現(xiàn)無限循環(huán),故選D
7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個數(shù),19是中位數(shù),乙得分為5,7,11,11,13,20,22,30,31,40。共11個數(shù),13是中位數(shù)。
故選B。
8.提示:得所以,故選C。
9.提示:由及得
如圖
過A作于M,則
得.
故選B.
10.提示:不妨設點(2,0)與曲線上不同的三的點距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。
11.提示:使用特值法:取集合當可以排除A、B;
取集合,當可以排除C;故選D;
12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)
2在圖4,圖6所示的情形,還剩個頂點;
在圖5的情形,還剩個頂點;
在圖2,圖3的情形,還剩個頂點;
在圖1的情形,還剩下個頂點.故選B.
二、填空題:
13.4
提示:
由(1),(2)得或,所以。
14.
提示:斜率 ,切點,所以切線方程為:
15.
提示:當時,不等式無解,當時,不等式變?yōu)?sub> ,
由題意得或,所以,或
16.
三、解答題:
17.解:① ∵∴的定義域為R;
② ∵,
∴為偶函數(shù);
③ ∵, ∴是周期為的周期函數(shù);
④ 當時,= ,
∴當時單調(diào)遞減;當時,
=,
單調(diào)遞增;又∵是周期為的偶函數(shù),∴在上單調(diào)遞增,在上單調(diào)遞減();
⑤ ∵當時;
當時.∴的值域為;
⑥由以上性質(zhì)可得:在上的圖象如圖所示:
18.解:(Ⅰ)取PC的中點G,連結EG,GD,則
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,
所以DG⊥PC,
|