如下圖.過△ABC的三個頂點分別作出與水平線垂直的三條直線.外側(cè)兩條直線之間的距離叫△ABC的“水平寬 (a).中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h) .我們可得出一種計算三角形面積的新方法:.即三角形面積等于水平寬與鉛垂高乘積的一半. 查看更多

 

題目列表(包括答案和解析)

閱讀材料:
如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.
我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
已知:直線l1:y=-2x+6與x軸交于點A,直線l2:y=x+3與y軸交于點B,直線l1、l2交于點C.
(1)建立平面直角坐標(biāo)系,畫出示意圖(無需列表)并求出C點的坐標(biāo);
(2)利用閱讀材料提供的方法求△ABC的面積.

查看答案和解析>>

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=
9
8
S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

作業(yè)寶如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.
我們可得出一種計算三角形面積的新方法:S△ABC=數(shù)學(xué)公式ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
已知:直線l1:y=-2x+6與x軸交于點A,直線l2:y=x+3與y軸交于點B,直線l1、l2交于點C.
(1)建立平面直角坐標(biāo)系,畫出示意圖(無需列表)并求出C點的坐標(biāo);
(2)利用閱讀材料提供的方法求△ABC的面積.

查看答案和解析>>

(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是______.

(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:數(shù)學(xué)公式,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=數(shù)學(xué)公式S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高()”.我們可得出一種計算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:

如圖,拋物線頂點坐標(biāo)為點C(1,4),交軸于點A(3,0),交軸于點B.

(1)求拋物線和直線AB的解析式;

(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連結(jié)PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及

(3)點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使,若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案