(2)當在什么范圍內(nèi)變化時.直線上存在點P.使得BPA是以為頂角的等腰三角形.請用不等式表示的取值范圍: .七.解答題 查看更多

 

題目列表(包括答案和解析)

如圖,為直角,點為線段的中點,點是射線上的一個動點(不與點重合),連結,作,垂足為,連結,過點,交

(1)求證:;

(2)在什么范圍內(nèi)變化時,四邊形是梯形,并說明理由;

(3)在什么范圍內(nèi)變化時,線段上存在點,滿足條件,并說明理由.

查看答案和解析>>

如圖所示,直線l1⊥l2,垂足為點O,A,B是直線l1上的兩點,且OB=2,AB=
2
.直線l1繞點O按逆時針方向旋轉,旋轉角度為α(0°<α<180°).
(1)當α=60°時,在直線l2上找點P,使得△BPA是以∠B為頂角的等腰三角形,此時OP=
 

(2)當α在什么范圍內(nèi)變化時,直線l2上存在點P,使得△BPA是以∠B為頂角的等腰三精英家教網(wǎng)角形,請用不等式表示α的取值范圍:
 

查看答案和解析>>

(2007•義烏)如圖所示,直線l1⊥l2,垂足為點O,A,B是直線l1上的兩點,且OB=2,AB=.直線l1繞點O按逆時針方向旋轉,旋轉角度為α(0°<α<180°).
(1)當α=60°時,在直線l2上找點P,使得△BPA是以∠B為頂角的等腰三角形,此時OP=   
(2)當α在什么范圍內(nèi)變化時,直線l2上存在點P,使得△BPA是以∠B為頂角的等腰三角形,請用不等式表示α的取值范圍:   

查看答案和解析>>

如圖所示,直線l1⊥l2,垂足為點O,A,B是直線l1上的兩點,且OB=2,AB=.直線l1繞點O按逆時針方向旋轉,旋轉角度為α(0°<α<180°).
(1)當α=60°時,在直線l2上找點P,使得△BPA是以∠B為頂角的等腰三角形,此時OP=   
(2)當α在什么范圍內(nèi)變化時,直線l2上存在點P,使得△BPA是以∠B為頂角的等腰三角形,請用不等式表示α的取值范圍:   

查看答案和解析>>

如圖所示,直線l1⊥l2,垂足為點O,A,B是直線l1上的兩點,且OB=2,AB=.直線l1繞點O按逆時針方向旋轉,旋轉角度為α(0°<α<180°).
(1)當α=60°時,在直線l2上找點P,使得△BPA是以∠B為頂角的等腰三角形,此時OP=   
(2)當α在什么范圍內(nèi)變化時,直線l2上存在點P,使得△BPA是以∠B為頂角的等腰三角形,請用不等式表示α的取值范圍:   

查看答案和解析>>


同步練習冊答案