所以S△ACD=AC?PD.S△ACB=AC?BP 查看更多

 

題目列表(包括答案和解析)

閱讀材料:
如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為點P.求證:S四邊形ABCD=數(shù)學(xué)公式AC•BD;
證明:∵AC⊥BD,
數(shù)學(xué)公式
∴S四邊形ABCD=S△ACD+S△ACB=數(shù)學(xué)公式AC•PD+數(shù)學(xué)公式AC•BP
=數(shù)學(xué)公式AC(PD+PB)=數(shù)學(xué)公式AC•BD
解答問題:
(1)上述證明得到的性質(zhì)可敘述為______
(2)已知:如圖(2),在等腰梯形ABCD中,AD∥BC,對角線AC⊥BD,且相交于點P,AD=3cm,BC=7cm,利用上述性質(zhì)求梯形的面積.
(3)如圖(3),用一塊面積為800cm2的等腰梯形彩紙做風(fēng)箏,并用兩根竹條作梯形的對角線固定風(fēng)箏,對角線恰好互相垂直,問竹條的長是多少?

查看答案和解析>>

(2004•湟中縣)閱讀材料:如圖在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=AC•BD.
證明:AC⊥BD?
∴S四邊形ABCD=S△ACD+S△ACB=AC•PD+AC•BP
=AC(PD+PB)=AC•B D
解答問題:
(1)上述證明得到的性質(zhì)可敘述為______;
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

閱讀材料:如下圖(1)所示,在四邊形ABCD中,對角線AC⊥BD于P,求證:S四邊形ABCD=AC·BD。
證明:AC⊥BD
∴S四邊形ABCD=S△ACD+S△ACB=AC·PD+AC·BP=AC·(PD+PB)=AC·BD。
 
(1)上述證明得到的性質(zhì)可敘述為:____;
(2)已知:上圖(2)所示,等腰梯形ABCD中,AD∥BC,AC⊥BD于P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積。

查看答案和解析>>

(2004•湟中縣)閱讀材料:如圖在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=AC•BD.
證明:AC⊥BD?
∴S四邊形ABCD=S△ACD+S△ACB=AC•PD+AC•BP
=AC(PD+PB)=AC•B D
解答問題:
(1)上述證明得到的性質(zhì)可敘述為______;
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

閱讀材料:如圖在四邊形ABCD中,對角線AC⊥BD,垂足為P.
求證:S四邊形ABCD=AC•BD.
證明:AC⊥BD?
∴S四邊形ABCD=S△ACD+S△ACB=AC•PD+AC•BP
=AC(PD+PB)=AC•B D
解答問題:
(1)上述證明得到的性質(zhì)可敘述為______;
(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>


同步練習(xí)冊答案