16.如下圖.等腰△ABC中的頂角為120°.腰長為10cm.底邊上的高AD= cm. 查看更多

 

題目列表(包括答案和解析)

24、操作:如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明.
注意:選、偻瓿勺C明得10分;選取②完成證明得5分.
AN=NC(如圖②);②DM∥AC(如圖③).
附加題:若點M、N分別是射線AB、CA上的點,其它條件不變,再探線段BM、MN、NC之間的關(guān)系,在圖④中畫出圖形,并說明理由.

查看答案和解析>>

操作:如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明.
注意:選取①完成證明得10分;選取②完成證明得5分.
AN=NC(如圖②);②DM∥AC(如圖③).
附加題:若點M、N分別是射線AB、CA上的點,其它條件不變,再探線段BM、MN、NC之間的關(guān)系,在圖④中畫出圖形,并說明理由.

查看答案和解析>>

操作:如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明.
注意:選取①完成證明得10分;選、谕瓿勺C明得5分.
AN=NC(如圖②);②DM∥AC(如圖③).
附加題:若點M、N分別是射線AB、CA上的點,其它條件不變,再探線段BM、MN、NC之間的關(guān)系,在圖④中畫出圖形,并說明理由.

查看答案和解析>>

等腰△ABC,AB=AC=8,∠BAC=120°,P為BC的中點,小亮拿著30°角的透明三角板,使30°角的頂點落在點P,三角板繞P點旋轉(zhuǎn).

(1)如圖,當三角板的兩邊分別交AB、AC于點E、F時.求證:△BPE∽△CFP;

(2)操作:將三角板繞點P旋轉(zhuǎn)到下圖情形時,三角板的兩邊分別交BA的延長線、邊AC于點E、F.

①探究1:△BPE與△CFP還相似嗎?

②探究2:連結(jié)EF,△BPE與△PFE是否相似?請說明理由;

設(shè)EF=m,△EPF的面積為S,試用m的代數(shù)式表示S.

查看答案和解析>>

(2006•旅順口區(qū))操作:如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:線段BM、MN、NC之間的關(guān)系,并加以證明.
說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明.
注意:選取①完成證明得10分;選、谕瓿勺C明得5分.
AN=NC(如圖②);②DM∥AC(如圖③).
附加題:若點M、N分別是射線AB、CA上的點,其它條件不變,再探線段BM、MN、NC之間的關(guān)系,在圖④中畫出圖形,并說明理由.

查看答案和解析>>


同步練習冊答案