18.如下圖.在線段AB上選取一點D.使△DBO與等腰Rt△ABC位似.則點D的坐標(biāo)為 . 查看更多

 

題目列表(包括答案和解析)

26、如圖1,以△ABC的邊AB、AC為邊向內(nèi)作正方形ABFG和正方形ACDE,M是DF的中點,N是BC的中點,連接MN.探究線段MN與BC之間的關(guān)系,并加以證明.
說明:如果你經(jīng)過反復(fù)探索沒有解決問題,可以從下面①、②中選取一種情況完成你的證明,選取①比原題少得6分,選、诒仍}少得8分.
①如圖2,將正方形ACDE繞點A旋轉(zhuǎn),使點C、E分別落在AG、AB上;
②如圖3,將正方形ACDE繞點A旋轉(zhuǎn),使點B、A、C在一條直線.

查看答案和解析>>

如圖1,以△ABC的邊AB、AC為邊向內(nèi)作正方形ABFG和正方形ACDE,M是DF的中點,N是BC的中點,連接MN.探究線段MN與BC之間的關(guān)系,并加以證明.
說明:如果你經(jīng)過反復(fù)探索沒有解決問題,可以從下面①、②中選取一種情況完成你的證明,選、俦仍}少得6分,選、诒仍}少得8分.
①如圖2,將正方形ACDE繞點A旋轉(zhuǎn),使點C、E分別落在AG、AB上;
②如圖3,將正方形ACDE繞點A旋轉(zhuǎn),使點B、A、C在一條直線.

查看答案和解析>>

(本大題有兩題,請同學(xué)們選擇你喜歡且拿手一題解答)
【Ⅰ】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運動.設(shè)動點運動時間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運動.點M與點P同時出發(fā),且當(dāng)點P運動到終點D時,點M也停止運動.是否存在t,使得S△PMD=
112
S△ABC?若存在,請求出t的值;若不存在,請說明理由.
精英家教網(wǎng)
【Ⅱ】我校工會于“三•八”婦女節(jié)期間組織女職工到國家級風(fēng)景區(qū)“文成銅鈴山”觀光旅游.下面是領(lǐng)隊與旅行社導(dǎo)游收費標(biāo)準(zhǔn)的一段對話:
【領(lǐng)隊】組團去“文成銅鈴山”旅游每人收費是多少?
【導(dǎo)游】如果人數(shù)不超過30人,人均旅游費用為360元.
【領(lǐng)隊】超過30人怎樣優(yōu)惠呢?
【導(dǎo)游】如果超過30人,每增加1人,人均旅游費用降低5元,但人均旅游費用不得低于300元.
我校按旅行社的收費標(biāo)準(zhǔn)組團瀏覽“文成銅鈴山”結(jié)束后,共支付給旅行社12400元.設(shè)我校這次參加旅游的共有x人.
請你根據(jù)上述信息,回答下列問題:
(1)我校參加旅游的人數(shù)x的取值范圍是
 
;
(2)我校參加旅游的人每人實際應(yīng)收費
 
元(用含x的代數(shù)式表示);
(3)求我校這次到“文成銅鈴山”觀光旅游的女職工共有多少人?

查看答案和解析>>

(本大題有兩題,請同學(xué)們選擇你喜歡且拿手一題解答)
【Ⅰ】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運動.設(shè)動點運動時間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運動.點M與點P同時出發(fā),且當(dāng)點P運動到終點D時,點M也停止運動.是否存在t,使得S△PMD=
1
12
S△ABC?若存在,請求出t的值;若不存在,請說明理由.

【Ⅱ】我校工會于“三•八”婦女節(jié)期間組織女職工到國家級風(fēng)景區(qū)“文成銅鈴山”觀光旅游.下面是領(lǐng)隊與旅行社導(dǎo)游收費標(biāo)準(zhǔn)的一段對話:
【領(lǐng)隊】組團去“文成銅鈴山”旅游每人收費是多少?
【導(dǎo)游】如果人數(shù)不超過30人,人均旅游費用為360元.
【領(lǐng)隊】超過30人怎樣優(yōu)惠呢?
【導(dǎo)游】如果超過30人,每增加1人,人均旅游費用降低5元,但人均旅游費用不得低于300元.
我校按旅行社的收費標(biāo)準(zhǔn)組團瀏覽“文成銅鈴山”結(jié)束后,共支付給旅行社12400元.設(shè)我校這次參加旅游的共有x人.
請你根據(jù)上述信息,回答下列問題:
(1)我校參加旅游的人數(shù)x的取值范圍是______;
(2)我校參加旅游的人每人實際應(yīng)收費______元(用含x的代數(shù)式表示);
(3)求我校這次到“文成銅鈴山”觀光旅游的女職工共有多少人?

查看答案和解析>>

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網(wǎng)
(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段
 
的長度即為△ABC的費馬距離.
精英家教網(wǎng)
(3)知識應(yīng)用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長度最小,求輸水管總長度的最小值.
精英家教網(wǎng)

查看答案和解析>>


同步練習(xí)冊答案