題目列表(包括答案和解析)
△ABC中,AB>AC,AD、AE分別是BC邊上的中線和∠A的平分線,則AD和AE的大小關(guān)系是AD AE。(填“>”、“<”或“=”)
在△ABC中,AC=BC=2,∠C=900,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點。圖①,②,③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。
研究:
(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明。
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖④加以證明。
已知Rt△ABC中,∠ACB=90º,BC=5,tan∠A=,現(xiàn)將△ABC繞著點C逆時針旋轉(zhuǎn)(45º<<135º)得到△DCE,設(shè)直線DE與直線AB相交于點P,連接CP。
(1)當(dāng)CD⊥AB時(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點P在邊AB上時(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)△BCE的面積為時,求∠BPE的度數(shù)及PB的長。
已知,△ABC中,AB中,AB=17cm,BC=16cm,BC邊上的中線AD=15cm,求AC得( )。
A. 15 B. 16 C. 17 D. 18
如圖,在△ABC中,∠C=90°,AC=8,BC=6。P是AB邊上的一個動點(異于A、B兩點),過點P分別作AC、BC邊的垂線,垂足為M、N設(shè)AP=x。
(1)在△ABC中,AB= ;
(2)當(dāng)x= 時,矩形PMCN的周長是14;
(3)是否存在x的值,使得△PAM的面積、△PBN的面積與矩形PMCN的面積同時相等?請說出你的判斷,并加以說明。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com