(3)過點C作CD∥軸交拋物線于點D.若點P在線段AB上以每秒1個單位的速度由A向B運動.同時點Q在線段CD上也以每秒1個單位的速度由D向C運動.則經(jīng)過幾秒后.PQ=AC? 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=-x2+2mx-m2+2的頂點A在第一象限,過點A作AB⊥y軸于點B,C是線段AB上一點(不與點A、B重合),過點C作CD⊥x軸于點D并交拋物線于點P.

(1)若點C(1,a)是線段AB的中點,求點P的坐標;

(2)若直線AP交y軸的正半軸于點E,且AC=CP,求△OEP的面積S的取值范圍.

查看答案和解析>>

如圖,拋物線y=ax2+bx+c的頂點為A(0,1),與x軸的一個交點B的坐標為(2,0),點P在精英家教網(wǎng)拋物線上,其橫坐標為2n(0<n<1),作PC⊥x軸于C,PC交射線AB于點D
(1)求拋物線的解析式;
(2)用n的代數(shù)式表示CD、PD的長,并通過計算說明
PD
CD
OC
OB
的大小關(guān)系;
(3)若將原題中“0<n<1”的條件改為“n>1”,其他條件不變,請通過計算說明(2)中結(jié)論是否仍然成立?

查看答案和解析>>

精英家教網(wǎng)如圖,拋物線y=-
1
2
x2+
5
2
x-2與x軸相交于點A、B,與y軸相交于點C.
(1)求證:△AOC∽△COB;
(2)過點C作CD∥x軸交拋物線于點D.若點P在線段AB上以每秒1個單位的速度由A向B運動,同時點Q在線段CD上也以每秒1個單位的速度由D向C運動,則經(jīng)過幾秒后,PQ=AC.

查看答案和解析>>

如圖,拋物線y=數(shù)學公式x2+mx+n過原點O,與x軸交于A,點D(4,2)在該拋物線上,過點D作CD∥x軸,交拋物線于點C,交y軸于點B,連接CO、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCO繞點O按順時針旋轉(zhuǎn)90°后 再沿x軸對折得到△OEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;
(3)設(shè)過點E的直線交OA于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形AOCD的面積為1:3兩部分?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

如圖,拋物線y=ax2+bx+c的頂點為A(0,1),與x軸的一個交點B的坐標為(2,0),點P在拋物線上,其橫坐標為2n(0<n<1),作PC⊥x軸于C,PC交射線AB于點D
(1)求拋物線的解析式;
(2)用n的代數(shù)式表示CD、PD的長,并通過計算說明數(shù)學公式數(shù)學公式的大小關(guān)系;
(3)若將原題中“0<n<1”的條件改為“n>1”,其他條件不變,請通過計算說明(2)中結(jié)論是否仍然成立?

查看答案和解析>>


同步練習冊答案