題目列表(包括答案和解析)
已知函數(shù),數(shù)列
的項滿足:
,(1)試求
(2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.
【解析】第一問中,利用遞推關(guān)系,
,
第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學歸納法證明)i) ,
,命題成立
ii) 假設(shè)時,
成立
則時,
綜合i),ii) : 成立
設(shè)為實數(shù),首項為
,公差為
的等差數(shù)列
的前n項和為
,滿足
(1)若,求
及
;
(2)求d的取值范圍.
【解析】本試題主要考查了數(shù)列的求和的運用以及通項公式的運用。第一問中,利用和已知的
,得到結(jié)論
第二問中,利用首項和公差表示,則方程是一個有解的方程,因此判別式大于等于零,因此得到d的范圍。
解:(1)因為設(shè)為實數(shù),首項為
,公差為
的等差數(shù)列
的前n項和為
,滿足
所以
(2)因為
得到關(guān)于首項的一個二次方程,則方程必定有解,結(jié)合判別式求解得到
已知數(shù)列是公差不為零的等差數(shù)列,
,且
、
、
成等比數(shù)列。
⑴求數(shù)列的通項公式;
⑵設(shè),求數(shù)列
的前
項和
。
【解析】第一問中利用等差數(shù)列的首項為
,公差為d,則依題意有:
第二問中,利用第一問的結(jié)論得到數(shù)列的通項公式,
,利用裂項求和的思想解決即可。
已知數(shù)列的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求的通項公式;
(Ⅱ) 設(shè) (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當時,由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對偶式)設(shè),
,
則.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學歸納法)①當時,
,命題成立;
②假設(shè)時,命題成立,即
,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com