22.如圖.小唐同學正在操場上放風箏.風箏從A處起飛.幾分鐘后便飛達C處.此時.在AQ延長線上B處的小宋同學.發(fā)現(xiàn)自己的位置與風箏和旗桿PQ的頂點P在同一直線上.(1)已知旗桿高為10米.若在B處測得旗桿頂點P的仰角為30°.A處測得點P的仰角為45°.試求A.B之間的距離,(2)此時.在A處背向旗桿又測得風箏的仰角為75°.若繩子在空中視為一條線段.求繩子AC約為多少? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)如圖1,點C將線段AB分成兩部分,如果AB : AC="AC" : BC,那么稱點C為線段的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1: S2,如果S : S1= S1: S2,,那么稱直線為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點(如圖2),則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組探究發(fā)現(xiàn):在(1)中,過點C任作AE交AB于E,再過點D作,交 AC于點F,連接EF(如圖3),則直線EF是△ABC的黃金分割線.請說明理由.
(4)如圖4,點E是ABCD的邊AB的黃金分割點,過點E作,交DC于點F,顯然直線EF是ABCD的黃金分割線.請你再畫一條ABCD的黃金分割線,使它不經(jīng)過ABCD各邊黃金分割點(保留必要的輔助線).

查看答案和解析>>

(本小題滿分10分)

如圖14①至圖14④中,兩平行線ABCD音的距離均為6,點MAB上一定點.

思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α,當α=________度時,點PCD的距離最小,最小值為____________.

探究一在圖14①的基礎上,以點M為旋轉中心,在AB、CD之間順時針旋轉該半圓形紙片,直到不能再轉動為止.如圖14②,得到最大旋轉角∠BMO=_______度,此時點NCD的距離是______________.

探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點MABCD之間順時針旋轉.

⑴如圖14③,當α=60°時,求在旋轉過程中,點PCD的最小距離,并請指出旋轉角∠BMO的最大值:

⑵如圖14④,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.

(參考數(shù)據(jù):sin49°=,cos41°=,tan37°=

            

 

查看答案和解析>>

(本小題滿分10分)如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于)的矩形花圃,設花圃一邊的長為m,面積為
(1)求的函數(shù)關系式;
(2)如果要圍成面積為的花圃,的長是多少?
(3)能圍成面積比更大的花圃嗎?如果能,請求出最大面積;如果不能,請說明理由.

查看答案和解析>>

(本小題滿分10分)

如圖,某地海岸線可以近似地看作一條直線,兩救生員在岸邊A處巡查,發(fā)現(xiàn)在海中B處有人求救,救生員甲與乙都沒有直接從A處游向B處,甲是沿岸邊A處跑到離B最近的D處,然后游向B處;乙是沿岸邊A處跑到點C處然后游向B處,若兩救生員在岸邊的行進速度都為6米∕秒,在海水中的行進速度都為2米∕秒,試分析救生員的選擇是否正確?誰先到達點B處?(,)

 

查看答案和解析>>

(本小題滿分10分)
如圖14①至圖14④中,兩平行線AB、CD音的距離均為6,點MAB上一定點.
思考:如圖14①中,圓心為O的半圓形紙片在AB、CD之間(包括AB、CD),其直徑MN在AB上,MN=8,點P為半圓上一點,設∠MOP=α,當α=________度時,點PCD的距離最小,最小值為____________.
探究一在圖14①的基礎上,以點M為旋轉中心,在AB、CD之間順時針旋轉該半圓形紙片,直到不能再轉動為止.如圖14②,得到最大旋轉角∠BMO=_______度,此時點NCD的距離是______________.
探究二將圖14①中的扇形紙片NOP按下面對α的要求剪掉,使扇形紙片MOP繞點MAB、CD之間順時針旋轉.
⑴如圖14③,當α=60°時,求在旋轉過程中,點PCD的最小距離,并請指出旋轉角∠BMO的最大值:
⑵如圖14④,在扇形紙片MOP旋轉過程中,要保證點P能落在直線CD上,請確定α的取值范圍.
(參考數(shù)據(jù):sin49°=cos41°=,tan37°=
            

查看答案和解析>>


同步練習冊答案