A.4 B.3 C.2 D. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

A、B、C、D四點(diǎn)的坐標(biāo)依次是(-1,0)、(0,2)、(4,3)、(3,1),則四邊形ABCD為(    )

A.正方形              B.矩形               C.菱形               D.平行四邊形

查看答案和解析>>

a、b、c∈R,下列命題:

       ①若a>b,則ac2>bc2;       ②若ab≠0,則  ≥2;

       ③若a>|b|,n∈N*,則an>bn;   ④若a>b>0,則<

       ⑤若logab<0,則a、b中至少有一個(gè)大于1.

其中正確命題的個(gè)數(shù)為                     (    )

       A.1個(gè)      B.2個(gè)            C.3個(gè)       D.4個(gè)

查看答案和解析>>

      (    )

A、 2             B、   4           C、   0           D、3

 

查看答案和解析>>

A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)的最大值.

查看答案和解析>>

1-15    D AC AC    A ABAA   BC

13.     14.40     15. 

16.

17.證明:(Ⅰ)

           

       函數(shù)上為增函數(shù);

(Ⅱ)反證法:假設(shè)存在,滿足     

          

這與矛盾,假設(shè)錯(cuò)誤      

故方程沒(méi)有負(fù)數(shù)根 

 18.解:依題意有:= a,

 =2ax+ (x<2)

方程為=0

與圓相切     =

a=

19.解:(Ⅰ),                         ……………………………2分

         ∴,                      ……………………………3分

         又,                   ……………………………4分

∴曲線處的切線方程為,     …………5分

.                                   …………………6分

  (Ⅱ)由消去,解得,,……7分

所求面積,  …………9分

        設(shè),則,  …………10分

        ∴

              .                              ……………………12分

 

21.(1)當(dāng)時(shí),當(dāng)時(shí),.   

       由條件可知,,即解得

       ∵                              ………….5分

              (2)當(dāng)時(shí),     

              即

                     

故m的取值范圍是                      …………….12分

22. 解:(I)因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e               ----1分

6ec8aac122bd4f6e,6ec8aac122bd4f6e        

解得6ec8aac122bd4f6e,                    ------------------------3分

此時(shí)6ec8aac122bd4f6e,

當(dāng)6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e,當(dāng)6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e,           ----------5分

所以6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e取極小值,所以6ec8aac122bd4f6e符合題目條件;                  ----------6分

(II)由6ec8aac122bd4f6e6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e是直線6ec8aac122bd4f6e與曲線6ec8aac122bd4f6e的一個(gè)切點(diǎn);        -----8分

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e,所以6ec8aac122bd4f6e是直線6ec8aac122bd4f6e與曲線6ec8aac122bd4f6e的一個(gè)切點(diǎn);                     -----------10分

所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);

對(duì)任意xR,6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e                     

因此直線6ec8aac122bd4f6e是曲線6ec8aac122bd4f6e的“上夾線”. ---------------------14分

22.【解】(Ⅰ)

的增區(qū)間為減區(qū)間為.

極大值為,極小值為.…………4′

(Ⅱ)原不等式可化為由(Ⅰ)知,時(shí),的最大值為.

的最大值為,由恒成立的意義知道,從而…8′

(Ⅲ)設(shè)

.

∴當(dāng)時(shí),,故上是減函數(shù),

又當(dāng)、、是正實(shí)數(shù)時(shí),

.

的單調(diào)性有:,

.…………12′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案