(2)將三角形板DEF由圖1所示的位置繞點O沿逆時針方向旋轉.設旋轉角為.其中問AM?CN的值是否改變?說明你的理由. 條件下.設AM=x.兩塊三角形板重疊面積為y.求y與x的函數(shù)關系式. 查看更多

 

題目列表(包括答案和解析)

將一張矩形紙板沿對角線剪開得到兩個三角形,△ABC與△DEF,∠B=∠E=90°,如圖①所示.
(1)將△ABC與△DEF按如圖②方式擺放,使點B與E重合,點C、B、E、F在同一條直線上,邊AB與DE重合,連接CD、FA,并延長FA交CD于G.試證:FA⊥CD
(2)在(1)所述基礎上,將紙板△ACB沿直線CF向右平移,并剪去ED右側部分,此時CA與ED的交點為A1,連接CD、FA1,并延長FA1交CD于G,如圖③所示,直線FA1和CD的位置關系是
 
(直接寫出)
(3)在(2)所述基礎上,將紙板△A1CE繞點E逆時針旋轉α度(0°<α<90°)至如圖④所示位置,連接CD、FA1,CD與FA1交于點G,試判斷FA1與CD的位置關系?并說明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖1,一副直角三角板滿足AB=BC=10,∠ABC=∠DEF=90°,∠EDF=30°,將三角板DEF的直角邊EF放置于三角板ABC的斜邊AC上,且點E與點A重合.
▲操作一:固定三角板ABC,將三角板DEF沿AC方向平移,使直角邊ED剛好過B點,如圖2所示;
[探究一]三角板DEF沿A→C方向平移的距離為
5
2
5
2
;
▲操作二:將三角板DEF沿A→C方向平移至一定位置后,再將三角板DEF繞點E旋轉,并使邊DE與邊AB交于點P,邊EF與邊BC交于點Q;
[探究二]在旋轉過程中,
(1)如圖3,當
CE
EA
=1時,請判斷下列結論是否正確(用“√”或“×”表示):
①EP=EQ;

②四邊形EPBQ的面積不變,且是△ABC面積的一半;

(2)如圖4,當
CE
EA
=2時,EP與EQ滿足怎樣的數(shù)量關系?并說明理由.
(3)根據(jù)你對(1)、(2)的探究結果,試寫出當
CE
EA
=m時,EP與EQ滿足的數(shù)量關系式為
EQ=mEP
EQ=mEP
;(直接寫出結論,不必證明)

查看答案和解析>>

把兩塊邊長為4的等邊三角板ABC和DEF先如圖1放置,使三角板DEF的頂點D與三角板ABC的AC邊的中點重合,DF經(jīng)過點B,射線DE與射線AB相交于點M,接著把三角形板ABC固定不動,將三角形板DEF由圖11-1所示的位置繞點D按逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,射線DF與線段BC相交于點N(如圖2示).
(1)當0°<α<60°時,求AM•CN的值;
(2)當0°<α<60°時,設AM=x,兩塊三角形板重疊部分的面積為y,求y與x的函數(shù)解析式并求定義域;
(3)當BM=2時,求兩塊三角形板重疊部分的面積.

查看答案和解析>>

把兩塊邊長為4的等邊三角板ABC和DEF先如圖1放置,使三角板DEF的頂點D與三角板ABC的AC邊的中點重合,DF經(jīng)過點B,射線DE與射線AB相交于點M,接著把三角形板ABC固定不動,將三角形板DEF由圖11-1所示的位置繞點D按逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,射線DF與線段BC相交于點N(如圖2示).
(1)當0°<α<60°時,求AM•CN的值;
(2)當0°<α<60°時,設AM=x,兩塊三角形板重疊部分的面積為y,求y與x的函數(shù)解析式并求定義域;
(3)當BM=2時,求兩塊三角形板重疊部分的面積.

查看答案和解析>>

(2012•普陀區(qū)一模)把兩塊邊長為4的等邊三角板ABC和DEF先如圖1放置,使三角板DEF的頂點D與三角板ABC的AC邊的中點重合,DF經(jīng)過點B,射線DE與射線AB相交于點M,接著把三角形板ABC固定不動,將三角形板DEF由圖11-1所示的位置繞點D按逆時針方向旋轉,設旋轉角為α.其中0°<α<90°,射線DF與線段BC相交于點N(如圖2示).
(1)當0°<α<60°時,求AM•CN的值;
(2)當0°<α<60°時,設AM=x,兩塊三角形板重疊部分的面積為y,求y與x的函數(shù)解析式并求定義域;
(3)當BM=2時,求兩塊三角形板重疊部分的面積.

查看答案和解析>>


同步練習冊答案