15.如圖(2)所示.試用含的代數(shù)式表示陰影部分的面積是 . 查看更多

 

題目列表(包括答案和解析)

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個長方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點.若廣告商要求包裝盒側面積Scm2最大,試求x應取何值?
設AE=FB=xcm,包裝盒側面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長為60cm,AE=FB=xcm,則EF=________cm.
為更好地尋找題目中的等量關系,將剪掉的陰影部分三角形集中,得到邊長為EF的正方形,其面積為________cm2;折起的四個角上的四個等腰直角三角形的面積之和為________cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側面積S,并求出問題的解.

查看答案和解析>>

(2013•河東區(qū)一模)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個長方體形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點.若廣告商要求包裝盒側面積Scm2最大,試求x應取何值?
設AE=FB=xcm,包裝盒側面積為Scm2

(I)分析:由正方形硬紙片ABCD的邊長為60cm,AE=FB=xcm,則EF=
(60-2x)
(60-2x)
cm.
為更好地尋找題目中的等量關系,將剪掉的陰影部分三角形集中,得到邊長為EF的正方形,其面積為
(60-2x)2
(60-2x)2
cm2;折起的四個角上的四個等腰直角三角形的面積之和為
4x2
4x2
cm2
(Ⅱ)由以上分析,用含x的代數(shù)式表示包裝盒的側面積S,并求出問題的解.

查看答案和解析>>

如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)圖②中的陰影部分的正方形的邊長等于_________(用含m、n的代數(shù)式表示);
(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①_____________________.方法②____________________;
(3)觀察圖②,試寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關系
__________________________________________________________________
(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=6,ab=4,求(a-b)2的值.

查看答案和解析>>

如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)圖②中的陰影部分的正方形的邊長等于_________(用含m、n的代數(shù)式表示);

(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.

方法①_____________________.方法②____________________;

(3)觀察圖②,試寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關系

__________________________________________________________________

(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=6,ab=4,求(a-b)2的值.

 

查看答案和解析>>

如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)圖②中的陰影部分的正方形的邊長等于_________(用含m、n的代數(shù)式表示);
(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①_____________________.方法②____________________;
(3)觀察圖②,試寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關系
__________________________________________________________________
(4)根據(jù)(3)題中的等量關系,解決如下問題:若a+b=6,ab=4,求(a-b)2的值.

查看答案和解析>>


同步練習冊答案